Menu Close

Trigonometry-If-sin-A-sin-B-a-and-cos-A-cos-B-b-find-cos-A-B-in-terms-of-a-and-b-




Question Number 135895 by liberty last updated on 16/Mar/21
Trigonometry  If sin A + sin B = a and cos A + cos B = b , find cos (A+B) in terms of a and b?
TrigonometryIf sin A + sin B = a and cos A + cos B = b , find cos (A+B) in terms of a and b?
Answered by EDWIN88 last updated on 18/Mar/21
 { ((sin A+sin B=2sin (((A+B)/2))cos (((A−B)/2))= a)),((cos A+cos B=2cos (((A+B)/2))cos (((A−B)/2))=b)) :}  we get tan (((A+B)/2))= (a/b) and tan (A+B)=((2tan (((A+B)/2)))/(1−tan^2 (((A+B)/2))))  tan (A+B)= (((((2a)/b)))/(1−((a^2 /b^2 )))) = ((2ab)/(b^2 −a^2 ))  then sec^2 (A+B)= 1+((4a^2 b^2 )/((b^2 −a^2 )^2 ))=(((b^2 −a^2 )^2 +4a^2 b^2 )/((b^2 −a^2 )^2 ))  so cos^2 (A+B)= (((b^2 −a^2 )^2 )/((b^2 +a^2 )^2 )) ⇒ cos (A+B)= ±(((b^2 −a^2 )/(b^2 +a^2 )))
{sinA+sinB=2sin(A+B2)cos(AB2)=acosA+cosB=2cos(A+B2)cos(AB2)=bwegettan(A+B2)=abandtan(A+B)=2tan(A+B2)1tan2(A+B2)tan(A+B)=(2ab)1(a2b2)=2abb2a2thensec2(A+B)=1+4a2b2(b2a2)2=(b2a2)2+4a2b2(b2a2)2socos2(A+B)=(b2a2)2(b2+a2)2cos(A+B)=±(b2a2b2+a2)
Commented by mr W last updated on 17/Mar/21
please check sir:   i think ∣...∣ is wrong. example   a=(√3), b=1 ⇒((b^2 −a^2 )/(b^2 +a^2 ))=−(1/2)  that could mean A=(π/3), B=(π/3)  cos (A+B)=cos (((2π)/3))=−(1/2)=((b^2 −a^2 )/(b^2 +a^2 ))≠∣((b^2 −a^2 )/(b^2 +a^2 ))∣
pleasechecksir:ithinkiswrong.examplea=3,b=1b2a2b2+a2=12thatcouldmeanA=π3,B=π3cos(A+B)=cos(2π3)=12=b2a2b2+a2≠∣b2a2b2+a2
Commented by EDWIN88 last updated on 17/Mar/21
why sir. If x^2  = (b−a)^2  then x=± (√((b−a)^2 ))  x = ∣b−a∣ sir
whysir.Ifx2=(ba)2thenx=±(ba)2x=basir
Commented by mr W last updated on 17/Mar/21
x=± (√((b−a)^2 ))≢x = ∣b−a∣  with x = ∣b−a∣ you fix x >0, but  x can also be negative: x=±∣b−a∣
x=±(ba)2x=bawithx=bayoufixx>0,butxcanalsobenegative:x=±ba
Answered by mr W last updated on 17/Mar/21
sin (((A+B)/2)+((A−B)/2))+sin (((A+B)/2)−((A+B)/2))=a  sin ((A+B)/2) cos ((A−B)/2)=(a/2)   ...(i)  cos (((A+B)/2)+((A−B)/2))+cos (((A+B)/2)−((A+B)/2))=b  cos (((A+B)/2))cos (((A−B)/2))=(b/2)   ...(ii)  (i)/(ii):  tan ((A+B)/2)=(a/b)  recall: cos 2α=((1−tan^2  α)/(1+tan^2  α))  ⇒cos (A+B)=((1−((a/b))^2 )/(1+((a/b))^2 ))=((b^2 −a^2 )/(b^2 +a^2 ))
sin(A+B2+AB2)+sin(A+B2A+B2)=asinA+B2cosAB2=a2(i)cos(A+B2+AB2)+cos(A+B2A+B2)=bcos(A+B2)cos(AB2)=b2(ii)(i)/(ii):tanA+B2=abrecall:cos2α=1tan2α1+tan2αcos(A+B)=1(ab)21+(ab)2=b2a2b2+a2

Leave a Reply

Your email address will not be published. Required fields are marked *