Question Number 135895 by liberty last updated on 16/Mar/21
$${Trigonometry} \\ $$If sin A + sin B = a and cos A + cos B = b , find cos (A+B) in terms of a and b?
Answered by EDWIN88 last updated on 18/Mar/21
$$\begin{cases}{\mathrm{sin}\:\mathrm{A}+\mathrm{sin}\:\mathrm{B}=\mathrm{2sin}\:\left(\frac{\mathrm{A}+\mathrm{B}}{\mathrm{2}}\right)\mathrm{cos}\:\left(\frac{\mathrm{A}−\mathrm{B}}{\mathrm{2}}\right)=\:{a}}\\{\mathrm{cos}\:{A}+\mathrm{cos}\:\mathrm{B}=\mathrm{2cos}\:\left(\frac{\mathrm{A}+\mathrm{B}}{\mathrm{2}}\right)\mathrm{cos}\:\left(\frac{\mathrm{A}−\mathrm{B}}{\mathrm{2}}\right)={b}}\end{cases} \\ $$$$\mathrm{we}\:\mathrm{get}\:\mathrm{tan}\:\left(\frac{\mathrm{A}+\mathrm{B}}{\mathrm{2}}\right)=\:\frac{{a}}{{b}}\:\mathrm{and}\:\mathrm{tan}\:\left(\mathrm{A}+\mathrm{B}\right)=\frac{\mathrm{2tan}\:\left(\frac{\mathrm{A}+\mathrm{B}}{\mathrm{2}}\right)}{\mathrm{1}−\mathrm{tan}\:^{\mathrm{2}} \left(\frac{\mathrm{A}+\mathrm{B}}{\mathrm{2}}\right)} \\ $$$$\mathrm{tan}\:\left(\mathrm{A}+\mathrm{B}\right)=\:\frac{\left(\frac{\mathrm{2}{a}}{{b}}\right)}{\mathrm{1}−\left(\frac{{a}^{\mathrm{2}} }{{b}^{\mathrm{2}} }\right)}\:=\:\frac{\mathrm{2}{ab}}{{b}^{\mathrm{2}} −{a}^{\mathrm{2}} } \\ $$$$\mathrm{then}\:\mathrm{sec}\:^{\mathrm{2}} \left(\mathrm{A}+\mathrm{B}\right)=\:\mathrm{1}+\frac{\mathrm{4}{a}^{\mathrm{2}} {b}^{\mathrm{2}} }{\left({b}^{\mathrm{2}} −{a}^{\mathrm{2}} \right)^{\mathrm{2}} }=\frac{\left({b}^{\mathrm{2}} −{a}^{\mathrm{2}} \right)^{\mathrm{2}} +\mathrm{4}{a}^{\mathrm{2}} {b}^{\mathrm{2}} }{\left({b}^{\mathrm{2}} −{a}^{\mathrm{2}} \right)^{\mathrm{2}} } \\ $$$${so}\:\mathrm{cos}\:^{\mathrm{2}} \left({A}+\mathrm{B}\right)=\:\frac{\left(\mathrm{b}^{\mathrm{2}} −\mathrm{a}^{\mathrm{2}} \right)^{\mathrm{2}} }{\left(\mathrm{b}^{\mathrm{2}} +\mathrm{a}^{\mathrm{2}} \right)^{\mathrm{2}} }\:\Rightarrow\:\mathrm{cos}\:\left(\mathrm{A}+\mathrm{B}\right)=\:\pm\left(\frac{\mathrm{b}^{\mathrm{2}} −\mathrm{a}^{\mathrm{2}} }{\mathrm{b}^{\mathrm{2}} +\mathrm{a}^{\mathrm{2}} }\right)\: \\ $$
Commented by mr W last updated on 17/Mar/21
$${please}\:{check}\:{sir}:\: \\ $$$${i}\:{think}\:\mid…\mid\:{is}\:{wrong}.\:{example}\: \\ $$$${a}=\sqrt{\mathrm{3}},\:{b}=\mathrm{1}\:\Rightarrow\frac{{b}^{\mathrm{2}} −{a}^{\mathrm{2}} }{{b}^{\mathrm{2}} +{a}^{\mathrm{2}} }=−\frac{\mathrm{1}}{\mathrm{2}} \\ $$$${that}\:{could}\:{mean}\:{A}=\frac{\pi}{\mathrm{3}},\:{B}=\frac{\pi}{\mathrm{3}} \\ $$$$\mathrm{cos}\:\left({A}+{B}\right)=\mathrm{cos}\:\left(\frac{\mathrm{2}\pi}{\mathrm{3}}\right)=−\frac{\mathrm{1}}{\mathrm{2}}=\frac{{b}^{\mathrm{2}} −{a}^{\mathrm{2}} }{{b}^{\mathrm{2}} +{a}^{\mathrm{2}} }\neq\mid\frac{{b}^{\mathrm{2}} −{a}^{\mathrm{2}} }{{b}^{\mathrm{2}} +{a}^{\mathrm{2}} }\mid \\ $$
Commented by EDWIN88 last updated on 17/Mar/21
$$\mathrm{why}\:\mathrm{sir}.\:\mathrm{If}\:\mathrm{x}^{\mathrm{2}} \:=\:\left(\mathrm{b}−\mathrm{a}\right)^{\mathrm{2}} \:\mathrm{then}\:\mathrm{x}=\pm\:\sqrt{\left(\mathrm{b}−\mathrm{a}\right)^{\mathrm{2}} } \\ $$$$\mathrm{x}\:=\:\mid\mathrm{b}−\mathrm{a}\mid\:\mathrm{sir} \\ $$
Commented by mr W last updated on 17/Mar/21
$$\mathrm{x}=\pm\:\sqrt{\left(\mathrm{b}−\mathrm{a}\right)^{\mathrm{2}} }≢\mathrm{x}\:=\:\mid\mathrm{b}−\mathrm{a}\mid \\ $$$${with}\:\mathrm{x}\:=\:\mid\mathrm{b}−\mathrm{a}\mid\:{you}\:{fix}\:{x}\:>\mathrm{0},\:{but} \\ $$$${x}\:{can}\:{also}\:{be}\:{negative}:\:{x}=\pm\mid{b}−{a}\mid \\ $$
Answered by mr W last updated on 17/Mar/21
$$\mathrm{sin}\:\left(\frac{{A}+{B}}{\mathrm{2}}+\frac{{A}−{B}}{\mathrm{2}}\right)+\mathrm{sin}\:\left(\frac{{A}+{B}}{\mathrm{2}}−\frac{{A}+{B}}{\mathrm{2}}\right)={a} \\ $$$$\mathrm{sin}\:\frac{{A}+{B}}{\mathrm{2}}\:\mathrm{cos}\:\frac{{A}−{B}}{\mathrm{2}}=\frac{{a}}{\mathrm{2}}\:\:\:…\left({i}\right) \\ $$$$\mathrm{cos}\:\left(\frac{{A}+{B}}{\mathrm{2}}+\frac{{A}−{B}}{\mathrm{2}}\right)+\mathrm{cos}\:\left(\frac{{A}+{B}}{\mathrm{2}}−\frac{{A}+{B}}{\mathrm{2}}\right)={b} \\ $$$$\mathrm{cos}\:\left(\frac{{A}+{B}}{\mathrm{2}}\right)\mathrm{cos}\:\left(\frac{{A}−{B}}{\mathrm{2}}\right)=\frac{{b}}{\mathrm{2}}\:\:\:…\left({ii}\right) \\ $$$$\left({i}\right)/\left({ii}\right): \\ $$$$\mathrm{tan}\:\frac{{A}+{B}}{\mathrm{2}}=\frac{{a}}{{b}} \\ $$$${recall}:\:\mathrm{cos}\:\mathrm{2}\alpha=\frac{\mathrm{1}−\mathrm{tan}^{\mathrm{2}} \:\alpha}{\mathrm{1}+\mathrm{tan}^{\mathrm{2}} \:\alpha} \\ $$$$\Rightarrow\mathrm{cos}\:\left({A}+{B}\right)=\frac{\mathrm{1}−\left(\frac{{a}}{{b}}\right)^{\mathrm{2}} }{\mathrm{1}+\left(\frac{{a}}{{b}}\right)^{\mathrm{2}} }=\frac{{b}^{\mathrm{2}} −{a}^{\mathrm{2}} }{{b}^{\mathrm{2}} +{a}^{\mathrm{2}} } \\ $$