Menu Close

Trigonometry-If-tan-2-and-tan-2-are-the-roots-of-the-equation-8x-2-26x-15-0-then-what-is-cos-equal-to-




Question Number 134788 by bramlexs22 last updated on 07/Mar/21
Trigonometry  If tan^2(α) and tan^2(β) are the roots of the equation 8x^2−26x+15=0, then what is cos(α+β) equal to?
TrigonometryIf tan^2(α) and tan^2(β) are the roots of the equation 8x^2−26x+15=0, then what is cos(α+β) equal to?
Answered by john_santu last updated on 07/Mar/21
If tan^2 α and tan^2 β are the roots of  the equation 8x^2 −26x+15=0  then what is cos (α+β) equal to?  Let  { ((tan α)),((tan β)) :} are the roots of equation  8((√u) )^2 −26((√u))+15 = 0  or 64u^2 −436u +225 = 0  By Vieta′s theorem     { ((tan α+tan β = ((436)/(64)) ...(i))),((tan α. tan β = ((225)/(64))...(ii))) :}  so we get tan (α+β) = (((436)/(64))/(1−((225)/(64)))) = −((436)/(161))  then sec^2 (α+β) = 1+(−((436)/(161)))^2 =((216 017)/(25 921))  ∴ cos (α+β)=(1/(sec (α+β))) = −(√((25 921)/(216 017)))  cos (α+β) ≈ −0.3464  Note : we use negative root because  by eq(i) and (ii) α,β are acute and  α+β is in 2^(nd)  quadrant.
Iftan2αandtan2βaretherootsoftheequation8x226x+15=0thenwhatiscos(α+β)equalto?Let{tanαtanβaretherootsofequation8(u)226(u)+15=0or64u2436u+225=0ByVietastheorem{tanα+tanβ=43664(i)tanα.tanβ=22564(ii)sowegettan(α+β)=43664122564=436161thensec2(α+β)=1+(436161)2=21601725921cos(α+β)=1sec(α+β)=25921216017cos(α+β)0.3464Note:weusenegativerootbecausebyeq(i)and(ii)α,βareacuteandα+βisin2ndquadrant.

Leave a Reply

Your email address will not be published. Required fields are marked *