Trigonometry-What-is-the-minimum-value-of-3sin-x-4cos-x-10-3sin-x-4cos-x-10- Tinku Tara June 3, 2023 Trigonometry 0 Comments FacebookTweetPin Question Number 132016 by bramlexs22 last updated on 10/Feb/21 TrigonometryWhatistheminimumvalueof(3sinx−4cosx−10)(3sinx+4cosx−10). Answered by EDWIN88 last updated on 11/Feb/21 consider((3sinx−10)−4cosx)((3sinx−10)+4cosx)=(3sinx−10)2−16cos2x=9sin2x−60sinx+100−16(1−sin2x)=25sin2x−60sinx+84=25(sin2x−125sinx+8425)=25[(sinx−65)2+4825]letJ=(3sinx−4cosx−10)(3sinx+4cosx−10)J=25[(sinx−65)2+4825]J=5(sinx−65)2+4825Jwillbeminimumifg(x)=(sinx−65)2+4825minimum⇒takeg′(x)=2cosx(sinx−65)=0wegetcosx=0sincesinx=65isrejectedthenfromcosx=0⇒sinx=1Jmin=5(1−65)2+4825=7 Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: 1-2-x-2-sin3x-dx-Next Next post: f-N-R-g-N-R-f-n-0-2pi-x-n-sin-xdx-g-n-0-2pi-x-n-cos-xdx-f-n-1-f-n-g-n-1-g-n- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.