Menu Close

Trigonometry-What-is-the-minimum-value-of-3sin-x-4cos-x-10-3sin-x-4cos-x-10-




Question Number 132016 by bramlexs22 last updated on 10/Feb/21
Trigonometry   What is the minimum value of   (√((3sin x−4cos x−10)(3sin x+4cos x−10))) .
TrigonometryWhatistheminimumvalueof(3sinx4cosx10)(3sinx+4cosx10).
Answered by EDWIN88 last updated on 11/Feb/21
 consider ((3sin x−10)−4cos x)((3sin x−10)+4cos x)=  (3sin x−10)^2 −16cos^2 x = 9sin^2 x−60sin x+100−16(1−sin^2 x)   = 25sin^2 x−60sin x+84   = 25(sin^2 x−((12)/5)sin x+((84)/(25)))   = 25 [ (sin x−(6/5))^2 +((48)/(25)) ]  let J = (√((3sin x−4cos x−10)(3sin x+4cos x−10)))  J=(√(25 [ (sin x−(6/5))^2 +((48)/(25)) ] ))   J = 5(√((sin x−(6/5))^2 +((48)/(25))))  J will be minimum if g(x)=(sin x−(6/5))^2 +((48)/(25))  minimum ⇒take g′(x)=2cos x(sin x−(6/5))=0  we get cos x=0 since sin x=(6/5) is rejected  then from cos x=0⇒sin x=1  J_(min ) = 5(√((1−(6/5))^2 +((48)/(25)))) = 7
consider((3sinx10)4cosx)((3sinx10)+4cosx)=(3sinx10)216cos2x=9sin2x60sinx+10016(1sin2x)=25sin2x60sinx+84=25(sin2x125sinx+8425)=25[(sinx65)2+4825]letJ=(3sinx4cosx10)(3sinx+4cosx10)J=25[(sinx65)2+4825]J=5(sinx65)2+4825Jwillbeminimumifg(x)=(sinx65)2+4825minimumtakeg(x)=2cosx(sinx65)=0wegetcosx=0sincesinx=65isrejectedthenfromcosx=0sinx=1Jmin=5(165)2+4825=7

Leave a Reply

Your email address will not be published. Required fields are marked *