Menu Close

two-sequences-u-n-and-v-n-for-n-N-is-defined-as-u-0-3-u-n-1-1-2-u-n-v-n-and-v-0-4-v-n-1-1-2-u-n-1-v-n-a-calculate-u-1-v-1-u-2-and




Question Number 76630 by Rio Michael last updated on 28/Dec/19
two sequences , (u_n ) and (v_n ), for n∈N is defined as:   { ((u_0  =3)),((u_(n+1) = (1/2)(u_n  + v_n )  )) :}and  { ((v_0 = 4)),((v_(n+1) = (1/2)(u_(n+1)  + v_n ))) :}  a) calculate u_1 ,v_1 ,u_2  and v_2   b) Another sequence (w_n ), is defined by    w_n  = v_n  − u_n  , ∀ n∈N  show that w_n  is a convegent geometric sequence.  c) Express w_n  as a function of n and obtain its limits.  d) Study the sense of variation(monotony)  of (u_n ) and (v_n )  what can you deduce?  e) Consider another sequence t_n  defined by        t_n  = ((u_n  + 2v_n )/3) , ∀ n ∈ N   show that t_n  is a constant sequence  f) hence obtain the limit of the sequences  (u_n ) and (v_n )
twosequences,(un)and(vn),fornNisdefinedas:{u0=3un+1=12(un+vn)and{v0=4vn+1=12(un+1+vn)a)calculateu1,v1,u2andv2b)Anothersequence(wn),isdefinedbywn=vnun,nNshowthatwnisaconvegentgeometricsequence.c)Expresswnasafunctionofnandobtainitslimits.d)Studythesenseofvariation(monotony)of(un)and(vn)whatcanyoudeduce?e)Consideranothersequencetndefinedbytn=un+2vn3,nNshowthattnisaconstantsequencef)henceobtainthelimitofthesequences(un)and(vn)
Answered by mr W last updated on 29/Dec/19
u_(n+1) = (1/2)(u_n  + v_n )   ..(i)  v_(n+1) = (1/2)(u_(n+1)  + v_n )   ...(ii)  (ii)−(i):  v_(n+1) =(3/2)u_(n+1) −(1/2)u_n   ⇒v_n =(3/2)u_n −(1/2)u_(n−1)   put this into (i):  ⇒4u_(n+1) − 5u_n +u_(n−1) =0  4x^2 − 5x+1=0  (4x−1)(x−1)=0  ⇒x=(1/4), x=1  ⇒u_n =(A/4^n )+B  u_0 =3 ⇒3=A+B  u_1 =(1/2)(3+4)=(7/2) ⇒(7/2)=(A/4)+B  ⇒−(1/2)=((3A)/4) ⇒A=−(2/3)  ⇒B=3+(2/3)=((11)/3)  ⇒u_n =(1/3)(11−(2/4^n ))  ⇒v_n =(1/3)(11+(1/4^n ))  ...  (b)  w_n  = v_n  − u_n =(1/3)(11+(1/4^n ))−(1/3)(11−(2/4^n ))  w_n =(1/4^n ) ⇒ G.P. with common ratio (1/4)  ....  (e)  t_n  = ((u_n  + 2v_n )/3)=(((2/3)(11+(1/4^n ))+(1/3)(11−(2/4^n )))/3)  ⇒t_n =((11)/3)=constant
un+1=12(un+vn)..(i)vn+1=12(un+1+vn)(ii)(ii)(i):vn+1=32un+112unvn=32un12un1putthisinto(i):4un+15un+un1=04x25x+1=0(4x1)(x1)=0x=14,x=1un=A4n+Bu0=33=A+Bu1=12(3+4)=7272=A4+B12=3A4A=23B=3+23=113un=13(1124n)vn=13(11+14n)(b)wn=vnun=13(11+14n)13(1124n)wn=14nG.P.withcommonratio14.(e)tn=un+2vn3=23(11+14n)+13(1124n)3tn=113=constant
Commented by mr W last updated on 29/Dec/19
alternative:  ⇒4u_(n+1) − 5u_n +u_(n−1) =0  ⇒4u_(n+1) − 4u_n −(u_n −u_(n−1) )=0  ⇒(u_(n+1) − u_n )=(1/4)(u_n −u_(n−1) )  ⇒c_(n+1) =(1/4)c_n   ⇒ G.P.  ⇒c_(n+1) =c_1 ((1/4))^n   c_1 =u_1 −u_0 =(7/2)−3=(1/2)  ⇒c_(n+1) =(1/2)((1/4))^n   ⇒u_(n+1) −u_n =(1/2)((1/4))^n   ⇒Σ_0 ^n u_(n+1) −Σ_0 ^n u_n =Σ_0 ^n (1/2)((1/4))^n   ⇒u_(n+1) −u_0 =(1/2)×((1−((1/4))^(n+1) )/(1−(1/4)))=(2/3)[1−((1/4))^(n+1) ]  ⇒u_(n+1) =(2/3)[1−((1/4))^(n+1) ]+3=(1/3)(11−(2/4^(n+1) ))  or  ⇒u_n =(1/3)(11−(2/4^n ))
alternative:4un+15un+un1=04un+14un(unun1)=0(un+1un)=14(unun1)cn+1=14cnG.P.cn+1=c1(14)nc1=u1u0=723=12cn+1=12(14)nun+1un=12(14)nn0un+1n0un=n012(14)nun+1u0=12×1(14)n+1114=23[1(14)n+1]un+1=23[1(14)n+1]+3=13(1124n+1)orun=13(1124n)
Commented by Rio Michael last updated on 29/Dec/19
thanks sir
thankssir

Leave a Reply

Your email address will not be published. Required fields are marked *