two-sequences-u-n-and-v-n-for-n-N-is-defined-as-u-0-3-u-n-1-1-2-u-n-v-n-and-v-0-4-v-n-1-1-2-u-n-1-v-n-a-calculate-u-1-v-1-u-2-and Tinku Tara June 3, 2023 Limits 0 Comments FacebookTweetPin Question Number 76630 by Rio Michael last updated on 28/Dec/19 twosequences,(un)and(vn),forn∈Nisdefinedas:{u0=3un+1=12(un+vn)and{v0=4vn+1=12(un+1+vn)a)calculateu1,v1,u2andv2b)Anothersequence(wn),isdefinedbywn=vn−un,∀n∈Nshowthatwnisaconvegentgeometricsequence.c)Expresswnasafunctionofnandobtainitslimits.d)Studythesenseofvariation(monotony)of(un)and(vn)whatcanyoudeduce?e)Consideranothersequencetndefinedbytn=un+2vn3,∀n∈Nshowthattnisaconstantsequencef)henceobtainthelimitofthesequences(un)and(vn) Answered by mr W last updated on 29/Dec/19 un+1=12(un+vn)..(i)vn+1=12(un+1+vn)…(ii)(ii)−(i):vn+1=32un+1−12un⇒vn=32un−12un−1putthisinto(i):⇒4un+1−5un+un−1=04x2−5x+1=0(4x−1)(x−1)=0⇒x=14,x=1⇒un=A4n+Bu0=3⇒3=A+Bu1=12(3+4)=72⇒72=A4+B⇒−12=3A4⇒A=−23⇒B=3+23=113⇒un=13(11−24n)⇒vn=13(11+14n)…(b)wn=vn−un=13(11+14n)−13(11−24n)wn=14n⇒G.P.withcommonratio14….(e)tn=un+2vn3=23(11+14n)+13(11−24n)3⇒tn=113=constant Commented by mr W last updated on 29/Dec/19 alternative:⇒4un+1−5un+un−1=0⇒4un+1−4un−(un−un−1)=0⇒(un+1−un)=14(un−un−1)⇒cn+1=14cn⇒G.P.⇒cn+1=c1(14)nc1=u1−u0=72−3=12⇒cn+1=12(14)n⇒un+1−un=12(14)n⇒∑n0un+1−∑n0un=∑n012(14)n⇒un+1−u0=12×1−(14)n+11−14=23[1−(14)n+1]⇒un+1=23[1−(14)n+1]+3=13(11−24n+1)or⇒un=13(11−24n) Commented by Rio Michael last updated on 29/Dec/19 thankssir Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: You-have-a-line-of-length-1-You-place-two-random-points-on-the-line-What-is-the-average-distance-between-the-two-points-Please-show-your-working-Next Next post: Question-142168 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.