Menu Close

Two-similar-boxes-B-i-i-1-2-contain-i-1-red-and-5-i-1-black-balls-One-box-is-chosen-at-random-and-two-balls-are-drawn-randomly-what-is-the-probability-that-both-balls-are-of-different-colours-




Question Number 12306 by Gaurav3651 last updated on 18/Apr/17
Two similar boxes B_i  (i=1,2)contain  (i+1)red and (5−i−1) black balls.  One box is chosen at random and  two balls are drawn randomly.  what is the probability that both  balls are of different colours?  (a)  1/2  (b)  3/10  (c)  2/5  (d)  3/5
$${Two}\:{similar}\:{boxes}\:{B}_{{i}} \:\left({i}=\mathrm{1},\mathrm{2}\right){contain} \\ $$$$\left({i}+\mathrm{1}\right){red}\:{and}\:\left(\mathrm{5}−{i}−\mathrm{1}\right)\:{black}\:{balls}. \\ $$$${One}\:{box}\:{is}\:{chosen}\:{at}\:{random}\:{and} \\ $$$${two}\:{balls}\:{are}\:{drawn}\:{randomly}. \\ $$$${what}\:{is}\:{the}\:{probability}\:{that}\:{both} \\ $$$${balls}\:{are}\:{of}\:{different}\:{colours}? \\ $$$$\left({a}\right)\:\:\mathrm{1}/\mathrm{2} \\ $$$$\left({b}\right)\:\:\mathrm{3}/\mathrm{10} \\ $$$$\left({c}\right)\:\:\mathrm{2}/\mathrm{5} \\ $$$$\left({d}\right)\:\:\mathrm{3}/\mathrm{5} \\ $$
Answered by mrW1 last updated on 19/Apr/17
1×((2×3)/(10))=(3/5)  ⇒(d)
$$\mathrm{1}×\frac{\mathrm{2}×\mathrm{3}}{\mathrm{10}}=\frac{\mathrm{3}}{\mathrm{5}} \\ $$$$\Rightarrow\left({d}\right) \\ $$
Commented by Gaurav3651 last updated on 19/Apr/17
Sir can you please explain the  solution.
$${Sir}\:{can}\:{you}\:{please}\:{explain}\:{the} \\ $$$${solution}. \\ $$
Commented by mrW1 last updated on 19/Apr/17
The answer should be 1× (6/(10))=(3/5), since  it makes no difference which box is  choosen.  5 balls in each box, 3 balls in colour A  and 2 balls in colour B.    possibilities to take 2 from 5 balls:   C(5,2)=10  possibilities to take 2 balls in different colours:   2×3=6    ⇒1×(6/(10))=(3/5)
$${The}\:{answer}\:{should}\:{be}\:\mathrm{1}×\:\frac{\mathrm{6}}{\mathrm{10}}=\frac{\mathrm{3}}{\mathrm{5}},\:{since} \\ $$$${it}\:{makes}\:{no}\:{difference}\:{which}\:{box}\:{is} \\ $$$${choosen}. \\ $$$$\mathrm{5}\:{balls}\:{in}\:{each}\:{box},\:\mathrm{3}\:{balls}\:{in}\:{colour}\:{A} \\ $$$${and}\:\mathrm{2}\:{balls}\:{in}\:{colour}\:{B}. \\ $$$$ \\ $$$${possibilities}\:{to}\:{take}\:\mathrm{2}\:{from}\:\mathrm{5}\:{balls}:\: \\ $$$${C}\left(\mathrm{5},\mathrm{2}\right)=\mathrm{10} \\ $$$${possibilities}\:{to}\:{take}\:\mathrm{2}\:{balls}\:{in}\:{different}\:{colours}:\: \\ $$$$\mathrm{2}×\mathrm{3}=\mathrm{6} \\ $$$$ \\ $$$$\Rightarrow\mathrm{1}×\frac{\mathrm{6}}{\mathrm{10}}=\frac{\mathrm{3}}{\mathrm{5}} \\ $$
Commented by Gaurav3651 last updated on 19/Apr/17
Thanks a lot sir
$${Thanks}\:{a}\:{lot}\:{sir} \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *