Question Number 66856 by John Kaloki Musau last updated on 20/Aug/19
$${Two}\:{towns}\:{T}\:{and}\:{S}\:{are}\:\mathrm{300}\:{km}\:{apart}. \\ $$$${Two}\:{buses}\:{A}\:{and}\:{B}\:{started}\:{from} \\ $$$${T}\:{at}\:{the}\:{same}\:{time}\:{travelling}\:{towards} \\ $$$${S}.\:{Bus}\:{B},\:{travelling}\:{at}\:{an}\:{average} \\ $$$${speed}\:{of}\:\mathrm{10}{km}/{h}\:{greater}\:{than}\:{that} \\ $$$${of}\:{A}\:{reached}\:{S}\:\mathrm{1}\frac{\mathrm{1}}{\mathrm{4}}\:{hours}\:{earlier}. \\ $$$$\left({a}\right)\:{Find}\:{the}\:{average}\:{speed}\:{of}\:{A} \\ $$$$\left({b}\right)\:{How}\:{far}\:{was}\:{A}\:{from}\:{T}\:{when} \\ $$$${B}\:{reached}\:{S}. \\ $$
Answered by John Kaloki Musau last updated on 20/Aug/19
$$\boldsymbol{{The}}\:\boldsymbol{{answers}}\:\boldsymbol{{are}}: \\ $$$$\left(\boldsymbol{{a}}\right)\mathrm{44}.\mathrm{25}\boldsymbol{{km}}/\boldsymbol{{h}} \\ $$$$\left(\boldsymbol{{b}}\right)\mathrm{244}.\mathrm{69}\boldsymbol{{km}} \\ $$$$\boldsymbol{{Please}}\:\boldsymbol{{show}}\:\boldsymbol{{me}}\:\boldsymbol{{how}}\:\boldsymbol{{to}}\: \\ $$$$\boldsymbol{{calculate}}\:\boldsymbol{{them}} \\ $$