Menu Close

u-1-1-u-n-1-n-2-n-1-n-2-n-R-lim-n-u-n-




Question Number 138571 by bemath last updated on 15/Apr/21
 { ((u_1 =1)),((u_(n+1) = ((n^2 −n+1)/n^2 ))) :} ; ∀n∈R   lim_(n→∞)  u_n  =?
$$\begin{cases}{{u}_{\mathrm{1}} =\mathrm{1}}\\{{u}_{{n}+\mathrm{1}} =\:\frac{{n}^{\mathrm{2}} −{n}+\mathrm{1}}{{n}^{\mathrm{2}} }}\end{cases}\:;\:\forall{n}\in\mathbb{R} \\ $$$$\:\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:{u}_{{n}} \:=? \\ $$
Answered by mathmax by abdo last updated on 15/Apr/21
⇒u_n =(((n−1)^2 −(n−1)+1)/((n−1)^2 )) =((n^2 −2n+1−n+2)/(n^2 −2n+1)) =((n^2 −3n+3)/(n^2 −2n+1))  ⇒lim_(n→+∞)  u_n =lim_(n→+∞) (n^2 /n^2 )=1
$$\Rightarrow\mathrm{u}_{\mathrm{n}} =\frac{\left(\mathrm{n}−\mathrm{1}\right)^{\mathrm{2}} −\left(\mathrm{n}−\mathrm{1}\right)+\mathrm{1}}{\left(\mathrm{n}−\mathrm{1}\right)^{\mathrm{2}} }\:=\frac{\mathrm{n}^{\mathrm{2}} −\mathrm{2n}+\mathrm{1}−\mathrm{n}+\mathrm{2}}{\mathrm{n}^{\mathrm{2}} −\mathrm{2n}+\mathrm{1}}\:=\frac{\mathrm{n}^{\mathrm{2}} −\mathrm{3n}+\mathrm{3}}{\mathrm{n}^{\mathrm{2}} −\mathrm{2n}+\mathrm{1}} \\ $$$$\Rightarrow\mathrm{lim}_{\mathrm{n}\rightarrow+\infty} \:\mathrm{u}_{\mathrm{n}} =\mathrm{lim}_{\mathrm{n}\rightarrow+\infty} \frac{\mathrm{n}^{\mathrm{2}} }{\mathrm{n}^{\mathrm{2}} }=\mathrm{1} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *