Menu Close

u-3-v-3-a-s-3-m-3-b-uv-s-m-2-sm-u-v-2-Find-u-v-s-m-in-terms-of-a-b-




Question Number 75593 by ajfour last updated on 13/Dec/19
u^3 +v^3 =a ,  s^3 +m^3 =b ,  uv=(s+m)^2  ,  sm=(u+v)^2  .  Find u,v,s,m  in terms of a,b.
u3+v3=a,s3+m3=b,uv=(s+m)2,sm=(u+v)2.Findu,v,s,mintermsofa,b.
Answered by behi83417@gmail.com last updated on 13/Dec/19
(s+m)[(s+m)^2 −3sm]=b⇒  uv[uv−3(u+v)^2 ]^2 =b^2   (u+v)[(u+v)^2 −3uv]=a  ⇒_(uv=q) ^(u+v=p)    { ((q(q−3p^2 )^2 =b^2 )),((p(p^2 −3q)=a)) :}  ⇒ { ((q^3 −6q^2 p^2 +9qp^4 =b^2 )),((p^3 −3pq=a⇒q=((p^3 −a)/(3p)))) :}  ⇒(((p^3 −a)^3 )/(27p^3 ))−6p^2 (((p^3 −a)^2 )/(9p^2 ))+9p^4  ((p^3 −a)/(3p))=b^2   ⇒(p^3 −a)^3 −18p^3 (p^3 −a)^2 +81p^6 (p^3 −a)=27p^3 b^2   ⇒^(p^3 =t) (t−a)^3 −18t(t−a)^2 +81t^2 (t−a)=27tb^2   ⇒(t^3 −3at^2 +3a^2 t−a^3 )−18t(t^2 −2at+a^2 )+81t^2 (t−a)=27tb^2   ⇒64t^3 −48at^2 −(15a^2 +27b^2 )t−a^3 =0  ⇒t^3 −(3/4)at^2 −(3/(64))(5a^2 +9b^2 )t−(a^3 /(64))=0  ⇒^(T=t+(a/4)) T^3 −(3/(64))(17a^2 +9b^2 )T−(3/(256))(4a^3 +5a^2 +9b^2 )=0  △=−3×((−3)/(256))(4a^3 +5a^2 +9b^2 )>0  k=((−27×((−3)/(256))(4a^3 +5a^2 +9b^2 ))/(2×(9/(256))(4a^3 +5a^2 +9b^2 )(√((9/(256))(4a^3 +5a^2 +9b^2 )))))<1  T_1 =((√(4a^3 +5a^2 +9b^2 ))/8)×cos((1/3)cos^(−1) ((24)/( (√(4a^3 +5a^2 +9b^2 )))))  T_2 =((√(4a^3 +5a^2 +9b^2 ))/8)×cos((1/3)cos^(−1) ((24)/( (√(4a^3 +5a^2 +9b^2 ))))−((2π)/3))  T_3 =((√(4a^3 +5a^2 +9b^2 ))/8)×cos((1/3)cos^(−1) ((24)/( (√(4a^3 +5a^2 +9b^2 ))))+((2π)/3))  p_i ^3 =t_i =^(i=1,2,3) T_i −(a/4)=((√(4a^3 +5a^2 +9b^2 ))/8)cos((1/3)cos^(−1) ((24)/( (√(4a^3 +5a^2 +9b^2 )))))−(a/4)  ⇒p_1 =((((√(4a^3 +5a^2 +9b^2 ))/8)cos((1/3)cos^(−1) ((24)/( (√(4a^3 +5a^2 +9b^2 )))))−(a/4)))^(1/3)   q_1 =((p^3 −a)/(3p))=((((√(4a^3 +5a^2 +9b^2 ))/8)cos((1/3)cos^(−1) ((24)/( (√(4a^3 +5a^2 +9b^2 )))))−((5a)/4))/(3((((√(4a^3 +5a^2 +9b^2 ))/8)cos((1/3)cos^(−1) ((24)/( (√(4a^3 +5a^2 +9b^2 )))))−(a/4)))^(1/3) ))  u=−(p/2)+((√(p^2 −4q))/2),v=−(p/2)−((√(p^2 −4q))/2)  s=−((uv)/2)+((√(uv−4(u+v)^2 ))/2)  m=−((uv)/2)−((√(uv−4(u+v)^2 ))/2)
(s+m)[(s+m)23sm]=buv[uv3(u+v)2]2=b2(u+v)[(u+v)23uv]=au+v=puv=q{q(q3p2)2=b2p(p23q)=a{q36q2p2+9qp4=b2p33pq=aq=p3a3p(p3a)327p36p2(p3a)29p2+9p4p3a3p=b2(p3a)318p3(p3a)2+81p6(p3a)=27p3b2p3=t(ta)318t(ta)2+81t2(ta)=27tb2(t33at2+3a2ta3)18t(t22at+a2)+81t2(ta)=27tb264t348at2(15a2+27b2)ta3=0t334at2364(5a2+9b2)ta364=0T=t+a4T3364(17a2+9b2)T3256(4a3+5a2+9b2)=0=3×3256(4a3+5a2+9b2)>0k=27×3256(4a3+5a2+9b2)2×9256(4a3+5a2+9b2)9256(4a3+5a2+9b2)<1T1=4a3+5a2+9b28×cos(13cos1244a3+5a2+9b2)T2=4a3+5a2+9b28×cos(13cos1244a3+5a2+9b22π3)T3=4a3+5a2+9b28×cos(13cos1244a3+5a2+9b2+2π3)pi3=ti=i=1,2,3Tia4=4a3+5a2+9b28cos(13cos1244a3+5a2+9b2)a4p1=4a3+5a2+9b28cos(13cos1244a3+5a2+9b2)a43q1=p3a3p=4a3+5a2+9b28cos(13cos1244a3+5a2+9b2)5a434a3+5a2+9b28cos(13cos1244a3+5a2+9b2)a43u=p2+p24q2,v=p2p24q2s=uv2+uv4(u+v)22m=uv2uv4(u+v)22

Leave a Reply

Your email address will not be published. Required fields are marked *