Question Number 77754 by abdomathmax last updated on 09/Jan/20

Commented by mathmax by abdo last updated on 10/Jan/20

Commented by mr W last updated on 10/Jan/20
^(n+1) )/4) U_(n+1) =−(−1)^n U_0 +(−1)^n ×((1+[2n^2 +8n+3](−1)^n )/4) ⇒U_(n+1) +U_n = (−1)^(2n) (n^2 +3n)≠(−1)^n n^2](https://www.tinkutara.com/question/Q77823.png)
Commented by mathmax by abdo last updated on 11/Jan/20

Answered by mr W last updated on 10/Jan/20
![say U_n =V_n +(−1)^(n−1) [an^3 +bn^2 +cn] U_(n+1) =V_(n+1) +(−1)^n [a(n+1)^3 +b(n+1)^2 +c(n+1)] U_(n+1) +U_n =V_(n+1) +V_n +(−1)^n {a[−n^3 +(n+1)^3 ]+b[−n^2 +(n+1)^2 ]+c[−n+(n+1)]} U_(n+1) +U_n =V_(n+1) +V_n +(−1)^n {a[3n^2 +3n+1]+b[2n+1]+c} U_(n+1) +U_n =V_(n+1) +V_n +(−1)^n {3an^2 +(3a+2b)n+(a+b+c)}=(−1)^n n^2 3a=1 ⇒a=(1/3) 3a+2b=0 ⇒b=−(1/2) a+b+c=0 ⇒c=−(1/3)+(1/2)=(1/6) ⇒V_(n+1) +V_n =0 ⇒V_(n+1) =−V_n ⇒V_n =(−1)^n V_0 ⇒U_n =V_n +(−1)^(n−1) [(1/3)n^3 −(1/2)n^2 +(1/6)n] ⇒U_n =(−1)^n [V_0 −((n(n−1)(2n−1))/6)] assume U_0 =1, ⇒V_0 =U_0 =1 ⇒U_n =(−1)^n [1−((n(n−1)(2n−1))/6)] check: U_(n+1) =(−1)^(n+1) [1−(((n+1)n(2n+1))/6)] U_(n+1) =(−1)^n [−1+(((n+1)n(2n+1))/6)] U_(n+1) +U_n =(−1)^n [−((n(n−1)(2n−1))/6)+(((n+1)n(2n+1))/6)] U_(n+1) +U_n =(−1)^n n^2 ⇒ ok](https://www.tinkutara.com/question/Q77792.png)
Commented by mr W last updated on 10/Jan/20
