Menu Close

U-n-isa-sequence-woch-verify-U-n-U-n-1-n-2-1-n-n-0-1-detdrmine-U-n-interm-of-n-2-find-nsture-of-the-serie-U-n-n-4-3-calculate-k-j-n-U-k-U-j-




Question Number 77754 by abdomathmax last updated on 09/Jan/20
U_n isa sequence woch verify  U_n +U_(n+1) =n^2 (−1)^n   ∀ n≥0  1) detdrmine U_n  interm of n  2) find nsture of the serie Σ (U_n /n^4 )  3) calculate Σ_(k+j=n)   U_k U_j
UnisasequencewochverifyUn+Un+1=n2(1)nn01)detdrmineUnintermofn2)findnstureoftheserieΣUnn43)calculatek+j=nUkUj
Commented by mathmax by abdo last updated on 10/Jan/20
we have U_n +U_(n+1) =n^2 (−1)^n  ⇒  Σ_(k=0) ^(n−1)  (−1)^k (U_k +U_(k+1) ) =Σ_(k=0) ^(n−1) (−1)^k  k^2  ⇒  U_0 +U_1 −(U_1 +U_2 )+....(−1)^(n−2) (U_(n−2) +U_(n−1) )+(−1)^(n−1) (U_(n−1) +U_n )  Σ_(k=0) ^(n−1) k^2 (−1)^k  ⇒ U_0  +(−1)^(n−1)  U_n =Σ_(k=0) ^(n−1) k^2 (−1)^k  ⇒  (−1)^(n−1) U_n =Σ_(k=0) ^(n−1) k^2 (−1)^k −U_0  ⇒  U_n =(−1)^(n−1)  Σ_(k=0) ^(n−1) k^2 (−1)^k −(−1)^(n−1)  U_0   =(−1)^n  U_0 −(−1)^n  Σ_(k=0) ^(n−1)  k^2 (−1)^k   let p(x)= 1+x +x^2  +...+x^(n−1)  =Σ_(k=0) ^(n−1)  x^k  ⇒p(x)=((x^n −1)/(x−1))  (x≠1)  ⇒Σ_(k=1) ^(n−1)  k x^(k−1) =((nx^(n−1) (x−1)−(x^n −1)×1)/((x−1)^2 ))=  =((nx^n −nx^(n−1) −x^n  +1)/((x−1)^2 )) =(((n−1)x^n −nx^(n−1)  +1)/((x−1)^2 )) ⇒  Σ_(k=0) ^(n−1)  k x^k =(x/((x−1)^2 )){(n−1)x^n −nx^(n−1) +1}=λ(x) ⇒  Σ_(k=1) ^(n−1) k^2 x^(k−1)  =λ^′ (x) ⇒Σ_(k=0) ^(n−1) k^2  x^k  =xλ^′ (x) ⇒  Σ_(k=0) ^(n−1)  k^2 (−1)^k  =−λ^′ (−1) ⇒  U_n =(−1)^n  U_o +(−1)^n  λ^′ (−1)   we have   λ(x)=(((n−1)x^(n+1) −nx^n  +x)/((x−1)^2 )) ⇒  λ^′ (x) =(({  (n^2 −1)x^n −n^2  x^(n−1)  +1)(x−1)^2 −2(x−1){(n−1)x^(n+1) −nx^n  +x})/((x−1)^4 ))  =(((x−1){ (n^2 −1)x^n −n^2 x^(n−1) +1}−2{(n−1)x^(n+1) −nx^n  +1})/((x−1)^3 )) ⇒  λ^′ (−1) =(((−2){(n^2 −1)(−1)^n −n^2 (−1)^(n−1) +1}−2{(n−1)(−1)^(n+1) −n(−1)^n  +1})/(−8))  =(((2n^2 −1)(−1)^n  +1−2{(−2n+1)(−1)^n  +1})/4)  =(((2n^2  +4n−3)(−1)^n  −1)/4) ⇒  U_n =(−1)^n  U_0   +(−1)^n ×((−1+(2n^2 +4n−3)(−1)^n )/4) for n≥1
wehaveUn+Un+1=n2(1)nk=0n1(1)k(Uk+Uk+1)=k=0n1(1)kk2U0+U1(U1+U2)+.(1)n2(Un2+Un1)+(1)n1(Un1+Un)k=0n1k2(1)kU0+(1)n1Un=k=0n1k2(1)k(1)n1Un=k=0n1k2(1)kU0Un=(1)n1k=0n1k2(1)k(1)n1U0=(1)nU0(1)nk=0n1k2(1)kletp(x)=1+x+x2++xn1=k=0n1xkp(x)=xn1x1(x1)k=1n1kxk1=nxn1(x1)(xn1)×1(x1)2==nxnnxn1xn+1(x1)2=(n1)xnnxn1+1(x1)2k=0n1kxk=x(x1)2{(n1)xnnxn1+1}=λ(x)k=1n1k2xk1=λ(x)k=0n1k2xk=xλ(x)k=0n1k2(1)k=λ(1)Un=(1)nUo+(1)nλ(1)wehaveλ(x)=(n1)xn+1nxn+x(x1)2λ(x)={(n21)xnn2xn1+1)(x1)22(x1){(n1)xn+1nxn+x}(x1)4=(x1){(n21)xnn2xn1+1}2{(n1)xn+1nxn+1}(x1)3λ(1)=(2){(n21)(1)nn2(1)n1+1}2{(n1)(1)n+1n(1)n+1}8=(2n21)(1)n+12{(2n+1)(1)n+1}4=(2n2+4n3)(1)n14Un=(1)nU0+(1)n×1+(2n2+4n3)(1)n4forn1
Commented by mr W last updated on 10/Jan/20
please check sir:  if U_n =(−1)^n  U_0   +(−1)^n ×((−1+(2n^2 +4n−3)(−1)^n )/4)  U_(n+1) =(−1)^(n+1)  U_0   +(−1)^(n+1) ×((−1+[2(n+1)^2 +4(n+1)−3](−1)^(n+1) )/4)  U_(n+1) =−(−1)^n  U_0   +(−1)^n ×((1+[2n^2 +8n+3](−1)^n )/4)  ⇒U_(n+1) +U_n = (−1)^(2n) (n^2 +3n)≠(−1)^n n^2
pleasechecksir:ifUn=(1)nU0+(1)n×1+(2n2+4n3)(1)n4Un+1=(1)n+1U0+(1)n+1×1+[2(n+1)2+4(n+1)3](1)n+14Un+1=(1)nU0+(1)n×1+[2n2+8n+3](1)n4Un+1+Un=(1)2n(n2+3n)(1)nn2
Commented by mathmax by abdo last updated on 11/Jan/20
perhaps my answer contain a error of calculus but sir mrw  give opportonity to the method...
perhapsmyanswercontainaerrorofcalculusbutsirmrwgiveopportonitytothemethod
Answered by mr W last updated on 10/Jan/20
say U_n =V_n +(−1)^(n−1) [an^3 +bn^2 +cn]  U_(n+1) =V_(n+1) +(−1)^n [a(n+1)^3 +b(n+1)^2 +c(n+1)]  U_(n+1) +U_n =V_(n+1) +V_n +(−1)^n {a[−n^3 +(n+1)^3 ]+b[−n^2 +(n+1)^2 ]+c[−n+(n+1)]}  U_(n+1) +U_n =V_(n+1) +V_n +(−1)^n {a[3n^2 +3n+1]+b[2n+1]+c}  U_(n+1) +U_n =V_(n+1) +V_n +(−1)^n {3an^2 +(3a+2b)n+(a+b+c)}=(−1)^n n^2   3a=1 ⇒a=(1/3)  3a+2b=0 ⇒b=−(1/2)  a+b+c=0 ⇒c=−(1/3)+(1/2)=(1/6)  ⇒V_(n+1) +V_n =0 ⇒V_(n+1) =−V_n   ⇒V_n =(−1)^n V_0   ⇒U_n =V_n +(−1)^(n−1) [(1/3)n^3 −(1/2)n^2 +(1/6)n]  ⇒U_n =(−1)^n [V_0 −((n(n−1)(2n−1))/6)]  assume U_0 =1, ⇒V_0 =U_0 =1  ⇒U_n =(−1)^n [1−((n(n−1)(2n−1))/6)]  check:  U_(n+1) =(−1)^(n+1) [1−(((n+1)n(2n+1))/6)]  U_(n+1) =(−1)^n [−1+(((n+1)n(2n+1))/6)]  U_(n+1) +U_n =(−1)^n [−((n(n−1)(2n−1))/6)+(((n+1)n(2n+1))/6)]  U_(n+1) +U_n =(−1)^n n^2  ⇒ ok
sayUn=Vn+(1)n1[an3+bn2+cn]Un+1=Vn+1+(1)n[a(n+1)3+b(n+1)2+c(n+1)]Un+1+Un=Vn+1+Vn+(1)n{a[n3+(n+1)3]+b[n2+(n+1)2]+c[n+(n+1)]}Un+1+Un=Vn+1+Vn+(1)n{a[3n2+3n+1]+b[2n+1]+c}Un+1+Un=Vn+1+Vn+(1)n{3an2+(3a+2b)n+(a+b+c)}=(1)nn23a=1a=133a+2b=0b=12a+b+c=0c=13+12=16Vn+1+Vn=0Vn+1=VnVn=(1)nV0Un=Vn+(1)n1[13n312n2+16n]Un=(1)n[V0n(n1)(2n1)6]assumeU0=1,V0=U0=1Un=(1)n[1n(n1)(2n1)6]check:Un+1=(1)n+1[1(n+1)n(2n+1)6]Un+1=(1)n[1+(n+1)n(2n+1)6]Un+1+Un=(1)n[n(n1)(2n1)6+(n+1)n(2n+1)6]Un+1+Un=(1)nn2ok
Commented by mr W last updated on 10/Jan/20
is my method ok?  this is my first try to solve such a kind  of questions.
ismymethodok?thisismyfirsttrytosolvesuchakindofquestions.

Leave a Reply

Your email address will not be published. Required fields are marked *