Menu Close

u-R-2-R-u-x-u-y-x-y-u-xy-




Question Number 324 by 123456 last updated on 25/Jan/15
u:R^2 →R  (∂u/∂x)+(∂u/∂y)=(((x+y)u)/(xy))
$${u}:\mathbb{R}^{\mathrm{2}} \rightarrow\mathbb{R} \\ $$$$\frac{\partial{u}}{\partial{x}}+\frac{\partial{u}}{\partial{y}}=\frac{\left({x}+{y}\right){u}}{{xy}} \\ $$
Answered by prakash jain last updated on 21/Dec/14
The equation is symmetric in x,y.  u=Cxy is solution by inspection.
$$\mathrm{The}\:\mathrm{equation}\:\mathrm{is}\:\mathrm{symmetric}\:\mathrm{in}\:{x},{y}. \\ $$$${u}={Cxy}\:\mathrm{is}\:\mathrm{solution}\:\mathrm{by}\:\mathrm{inspection}. \\ $$