Menu Close

u-R-R-v-R-R-u-x-v-x-x-2-v-x-u-x-v-x-x-3-v-x-h-x-u-x-v-x-




Question Number 560 by 123456 last updated on 26/Jan/15
u:R→R  v:R→R   { ((u(x)v(x)=x^2 −v(−x))),((u(−x)v(x)=x^3 +v(−x))) :}  h(x)=u(x)v(x)=?
u:RRv:RR{u(x)v(x)=x2v(x)u(x)v(x)=x3+v(x)h(x)=u(x)v(x)=?
Answered by prakash jain last updated on 26/Jan/15
u(x)v(x)=x^2 −v(−x)     ...(i)  u(−x)v(x)=x^3 +v(−x)  ...(ii)  add (i) and (ii)  v(x)[u(x)+u(−x)]=x^2 +x^3 ⇒v(x)=((x^2 +x^3 )/(u(x)+u(−x)))  u(−x)v(−x)=x^2 −v(x) replace x by −x in (i)  u(−x)((x^2 −x^3 )/(u(x)+u(−x)))=x^2 −((x^2 +x^3 )/(u(x)+u(−x)))  u(x)=a  u(−x)=b  ((b(x^2 −x^3 ))/(a+b))+((x^2 +x^3 )/(a+b))=x^2   bx^2 −bx^3 +x^2 +x^3 =ax^2 +bx^2   bx^3 =x^2 +x^3 −ax^2   b=((x^2 +x^3 −ax^2 )/x^3 )=((1+x−a)/x)  1+x−a=xb  1+x−u(x)=xu(−x)  xu(−x)+u(x)−x−1=0       ...(iii)  −xu(x)+u(−x)+x−1=0    ...(iv) replace x by −x in (iii)  multiply (iv) by x  −x^2 u(x)+xu(−x)+x^2 −x=0      ...(v)  add (iii) and (v)  u(x)+x^2 u(x)−x^2 −1=0  u(x)=1, u(−x)=1  v(x)=((x^2 +x^3 )/2), v(−x)=((x^2 −x^3 )/2)  Check condition 1  u(x)v(x)=((x^2 +x^3 )/2)=x^2 −((x^2 −x^3 )/2)=((x^2 +x^3 )/2)  Check condition 1  u(−x)v(x)=((x^2 +x^3 )/2)=x^3 +((x^2 −x^3 )/2)=((x^2 +x^3 )/2)  Results  u(x)=1  v(x)=((x^2 +x^3 )/2)  u(x)v(x)=((x^2 +x^3 )/2)
u(x)v(x)=x2v(x)(i)u(x)v(x)=x3+v(x)(ii)add(i)and(ii)v(x)[u(x)+u(x)]=x2+x3v(x)=x2+x3u(x)+u(x)u(x)v(x)=x2v(x)replacexbyxin(i)u(x)x2x3u(x)+u(x)=x2x2+x3u(x)+u(x)u(x)=au(x)=bb(x2x3)a+b+x2+x3a+b=x2bx2bx3+x2+x3=ax2+bx2bx3=x2+x3ax2b=x2+x3ax2x3=1+xax1+xa=xb1+xu(x)=xu(x)xu(x)+u(x)x1=0(iii)xu(x)+u(x)+x1=0(iv)replacexbyxin(iii)multiply(iv)byxx2u(x)+xu(x)+x2x=0(v)add(iii)and(v)u(x)+x2u(x)x21=0u(x)=1,u(x)=1v(x)=x2+x32,v(x)=x2x32Checkcondition1u(x)v(x)=x2+x32=x2x2x32=x2+x32Checkcondition1u(x)v(x)=x2+x32=x3+x2x32=x2+x32Resultsu(x)=1v(x)=x2+x32u(x)v(x)=x2+x32

Leave a Reply

Your email address will not be published. Required fields are marked *