Menu Close

Use-De-Moivre-s-theorem-to-prove-that-r-0-cos-rx-1-2-and-find-a-value-or-expression-for-r-0-sin-rx-assume-that-this-two-series-were-convergent-




Question Number 136582 by physicstutes last updated on 23/Mar/21
Use De′Moivre′s theorem to prove that   Σ_(r=0) ^∞ cos rx = (1/2) and find a value(or expression) for Σ_(r=0) ^∞ sin rx  assume that this two series were convergent.
UseDeMoivrestheoremtoprovethatr=0cosrx=12andfindavalue(orexpression)forr=0sinrxassumethatthistwoserieswereconvergent.
Answered by Ar Brandon last updated on 23/Mar/21
Σ_(r=0) ^∞ e^(irx) =(1/(1−e^(ix) ))=(e^(−(x/2)i) /(e^(−(x/2)i) −e^((x/2)i) ))=(e^(−(x/2)i) /(−2isin(x/2)))=(e^(−(x/2)i−((3π)/2)i) /(2sin(x/2)))                =((cos((x/2)+((3π)/2))−isin((x/2)+((3π)/2)))/(2sin(x/2)))=((sin(x/2)+icos(x/2))/(2sin(x/2)))  Σ_(r=0) ^∞ cos(rx)=ReΣ_(r=0) ^∞ e^(irx) =(1/2)  Σ_(r=0) ^∞ sin(rx)=ImΣ_(r=0) ^∞ e^(irx) =(1/2)cot((x/2))
r=0eirx=11eix=ex2iex2iex2i=ex2i2isinx2=ex2i3π2i2sinx2=cos(x2+3π2)isin(x2+3π2)2sinx2=sinx2+icosx22sinx2r=0cos(rx)=Rer=0eirx=12r=0sin(rx)=Imr=0eirx=12cot(x2)
Commented by physicstutes last updated on 23/Mar/21
perfect
perfect

Leave a Reply

Your email address will not be published. Required fields are marked *