Menu Close

use-defintion-to-prove-that-lim-x-0-1-x-1-x-x-1-




Question Number 70025 by Tony Lin last updated on 30/Sep/19
use ε-δ defintion to prove that  lim_(x→0) (((√(1+x))−(√(1−x)))/x)=1
useεδdefintiontoprovethatlimx01+x1xx=1
Commented by mind is power last updated on 01/Oct/19
=lim_(t→0) (((√(1+sin(t)))−(√(1−sin(t))))/(sin(t)))  =lim_ _(x→0) (1/(cos((t/2))))  ∀ε>0  ∃η>0  ∣x∣≤η⇒∣f(x)−1∣≤ε           1−ε≤(1/(cos((t/2))))≤1+ε  ⇒(1/(1−ε))≥cos((t/2))≥(1/(1+ε))  ⇒           (t/2)≤arcos((1/(1−ε)))  ⇒t≤2cos^(−1) ((1/(1−ε)))=η_ε
=limt01+sin(t)1sin(t)sin(t)=limx01cos(t2)ε>0η>0x∣⩽η⇒∣f(x)1∣⩽ε1ε1cos(t2)1+ε11εcos(t2)11+εt2arcos(11ε)t2cos1(11ε)=ηε

Leave a Reply

Your email address will not be published. Required fields are marked *