Menu Close

use-limit-comparison-test-to-determine-the-series-converge-or-diverge-k-1-ln-1-1-k-2-




Question Number 69212 by aliesam last updated on 21/Sep/19
use limit comparison test to determine  the series converge or diverge  Σ_(k=1) ^∞ ln(1+(1/k^2 ))
$${use}\:{limit}\:{comparison}\:{test}\:{to}\:{determine} \\ $$$${the}\:{series}\:{converge}\:{or}\:{diverge} \\ $$$$\underset{{k}=\mathrm{1}} {\overset{\infty} {\sum}}{ln}\left(\mathrm{1}+\frac{\mathrm{1}}{{k}^{\mathrm{2}} }\right) \\ $$
Answered by mind is power last updated on 21/Sep/19
∀x∈IR_+    ln (1+x)≤x  ⇒ ∀k∈N^∗   0≤ln (1+(1/k^2 ))≤(1/k^2 )  ⇒Σ_(k=1) ^(+∞) ln (1+(1/k^2 ))≤Σ_(k=1) ^(+∞) (1/k^2 )=(π^2 /6)
$$\forall{x}\in{IR}_{+} \:\:\:\mathrm{ln}\:\left(\mathrm{1}+{x}\right)\leqslant{x} \\ $$$$\Rightarrow\:\forall{k}\in\mathbb{N}^{\ast} \:\:\mathrm{0}\leqslant\mathrm{ln}\:\left(\mathrm{1}+\frac{\mathrm{1}}{{k}^{\mathrm{2}} }\right)\leqslant\frac{\mathrm{1}}{{k}^{\mathrm{2}} } \\ $$$$\Rightarrow\underset{{k}=\mathrm{1}} {\overset{+\infty} {\sum}}\mathrm{ln}\:\left(\mathrm{1}+\frac{\mathrm{1}}{{k}^{\mathrm{2}} }\right)\leqslant\sum_{{k}=\mathrm{1}} ^{+\infty} \frac{\mathrm{1}}{{k}^{\mathrm{2}} }=\frac{\pi^{\mathrm{2}} }{\mathrm{6}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *