Menu Close

Use-Newtown-Raphson-method-to-find-aproximate-value-of-X-7-x-1-starting-with-x-0-2-perform-4-iteration-and-all-iteration-should-be-presented-in-4-decimal-places-




Question Number 12612 by frank ntulah last updated on 26/Apr/17
Use Newtown Raphson method to find aproximate  value of  X=(√(((7/(x+1))))) ,starting with x_0 =2.  perform 4 iteration and all iteration   should be presented in 4 decimal places
UseNewtownRaphsonmethodtofindaproximatevalueofX=(7x+1),startingwithx0=2.perform4iterationandalliterationshouldbepresentedin4decimalplaces
Answered by mrW1 last updated on 26/Apr/17
f(x)=(√(7/(x+1)))−x  f′(x)=(1/(2(√(7/(x+1)))))×((−7)/((x+1)^2 ))−1  ((f(x))/(f′(x)))=−(((√(7/(x+1)))−x)/((1/(2(√(7/(x+1)))))×(7/((x+1)^2 ))+1))=−(((7/(x+1))−x(√(7/(x+1))))/((7/(2(x+1)^2 ))+(√(7/(x+1)))))  =−((14(x+1)−2x(√(7(x+1)^3 )))/(7+2(√(7(x+1)^3 ))))=g(x)  x_(n+1) =x_n −((f(x_n ))/(f′(x_n )))=x_n −g(x_n )    x_0 =2  x_1 =x_0 −g(x_0 )=2−g(2)=1.6234  x_2 =x_1 −g(x_1 )=1.6234−g(1.6234)=1.6310  x_3 =x_2 −g(x_2 )=1.6310−g(1.6310)=1.6311  x_4 =x_2 −g(x_3 )=1.6311−g(1.6311)=1.6311  ⇒x≈1.6311
f(x)=7x+1xf(x)=127x+1×7(x+1)21f(x)f(x)=7x+1x127x+1×7(x+1)2+1=7x+1x7x+172(x+1)2+7x+1=14(x+1)2x7(x+1)37+27(x+1)3=g(x)xn+1=xnf(xn)f(xn)=xng(xn)x0=2x1=x0g(x0)=2g(2)=1.6234x2=x1g(x1)=1.6234g(1.6234)=1.6310x3=x2g(x2)=1.6310g(1.6310)=1.6311x4=x2g(x3)=1.6311g(1.6311)=1.6311x1.6311
Commented by frank ntulah last updated on 27/Apr/17
God bless you sir
Godblessyousir

Leave a Reply

Your email address will not be published. Required fields are marked *