Use-Residus-Theorem-to-explicit-f-a-n-1-1-n-sin-na-n-3- Tinku Tara June 3, 2023 Integration 0 Comments FacebookTweetPin Question Number 69238 by ~ À ® @ 237 ~ last updated on 21/Sep/19 UseResidusTheoremtoexplicitf(a)=∑∞n=1(−1)nsin(na)n3 Commented by mathmax by abdo last updated on 22/Sep/19 letfirstfinds(x)=∑n=1∞(−1)nsin(nx)ns(x)=Im(∑n=1∞(−1)neinxn)=Im(∑n=1∞(−eix)nn)letw(z)=∑n=1∞znnwith∣z∣⩽1⇒w′(z)=∑n=1∞zn−1=11−z⇒w(z)=∫dz1−z+c=−ln(1−z)+c(c=w(0)=0)⇒w(z)=−ln(1−z)⇒∑n=1∞(−eix)nn=−ln(1+eix)=−ln(1+cosx+isinx)=−ln(2cos2(x2)+2isin(x2)cos(x2))=−ln(2cos(x2)eix2)=−ln(2cos(x2))−ix2⇒s(x)=−x2⇒∫s(x)dx=−x24+c=−∑n=1∞(−1)nn2cos(nx)x=0⇒c=−∑n=1∞(−1)nn2=−(21−2−1)ξ(2)=12π26=π212⇒∑n=1∞(−1)nn2cos(nx)=−x24+π212⇒∑n=1∞(−1)nn3sin(nx)=−x312+π212x+cx=0⇒c=0⇒∑n=1∞(−1)nn3sin(nx)=−x312+π2x12⇒∑n=1∞(−1)nn3sin(nx)=x12(π2−x2) Answered by mind is power last updated on 22/Sep/19 Wehavelimx→nπ(x−n)sin(πx)=π(sin(πx)x=n′=(−1)nletf(z)=πsin(za)z3sin(nπ)fhaspolesatz=nwithen∈Z∗oforder1andinz=0oforder3letCrsquarofsiderandcenterin0⇒∫Crf(z)dz=∑Zk2iπ(Res(f∣zk)″Zk∈Cr″andwehavelim∣zf(z)∣⇒0ByjordanlemmawegetLimr→+∞∫Crf(z)dz=0Residusth⇒Limr→+∞∫crf(z)dz=∑n∈^IZ2iπRes(f(z)∣∣n)⇒0=Res(f∣0)+∑n∈IZ∗Res(f∣n)Res(f∣n)=limz→n(z−n)πsin(za)z3sin(πz)=πsin(na)n3πcos(nπ)=(−1)nsin(na)n3Res(f∣0)weuselaurentseriesin(za)z3.πsin(πz)=(za−(za)36…)z3.1πz−π3z36..=1z3(a−z2a36…)(1+π2z26…)=az3+1z(aπ26−a36)….Res(f∣0)=a6(−a2+π2)⇒∑∣n∣⩾1(−1)nsin(na)n3−a6(a2−π2)=0⇒2∑n=1+∞(−1)nsin(na)n3=a6(a2−π2)⇒∑n=1+∞(−1)nsin(na)n3=a12(a2−π2) Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-134769Next Next post: Let-consider-K-0-1-1-x-a-1-x-b-1-x-c-x-1-lnx-dx-prove-that-e-K-a-b-a-c-b-c-a-b-c-a-b-c- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.