Menu Close

Use-Residus-Theorem-to-explicit-f-a-n-1-1-n-sin-na-n-3-




Question Number 69238 by ~ À ® @ 237 ~ last updated on 21/Sep/19
Use Residus Theorem to explicit   f(a)=Σ_(n=1) ^∞  (((−1)^n sin(na))/n^3 )
UseResidusTheoremtoexplicitf(a)=n=1(1)nsin(na)n3
Commented by mathmax by abdo last updated on 22/Sep/19
let first find s(x)=Σ_(n=1) ^∞  (((−1)^n sin(nx))/n)  s(x) =Im(Σ_(n=1) ^∞   (((−1)^n e^(inx) )/n)) =Im(Σ_(n=1) ^∞ (((−e^(ix) )^n )/n))  let w(z) =Σ_(n=1) ^∞   (z^n /n)  with  ∣z∣≤1 ⇒w^′ (z)=Σ_(n=1) ^∞  z^(n−1) =(1/(1−z)) ⇒  w(z)=∫ (dz/(1−z)) +c =−ln(1−z)+c (c=w(0)=0) ⇒w(z)=−ln(1−z)  ⇒Σ_(n=1) ^∞  (((−e^(ix) )^n )/n) =−ln(1+e^(ix) )=−ln(1+cosx +isinx)  =−ln(2cos^2 ((x/2))+2i sin((x/2))cos((x/2)))  =−ln(2cos((x/2))e^((ix)/2) ) =−ln(2cos((x/2)))−((ix)/2) ⇒s(x)=−(x/2) ⇒  ∫s(x)dx =−(x^2 /4) +c =−Σ_(n=1) ^∞  (((−1)^n )/n^2 )cos(nx)  x=0 ⇒c =−Σ_(n=1) ^∞  (((−1)^n )/n^2 ) =−(2^(1−2) −1)ξ(2) =(1/2)(π^2 /6) =(π^2 /(12)) ⇒  Σ_(n=1) ^∞  (((−1)^n )/n^2 ) cos(nx) =−(x^2 /4)+(π^2 /(12))   ⇒  Σ_(n=1) ^∞  (((−1)^n )/n^3 )sin(nx) =−(x^3 /(12))+(π^2 /(12))x +c  x=0 ⇒c=0 ⇒Σ_(n=1) ^∞  (((−1)^n )/n^3 )sin(nx) =−(x^3 /(12))+((π^2 x)/(12)) ⇒  Σ_(n=1) ^∞  (((−1)^n )/n^3 )sin(nx) =(x/(12))(π^2 −x^2 )
letfirstfinds(x)=n=1(1)nsin(nx)ns(x)=Im(n=1(1)neinxn)=Im(n=1(eix)nn)letw(z)=n=1znnwithz∣⩽1w(z)=n=1zn1=11zw(z)=dz1z+c=ln(1z)+c(c=w(0)=0)w(z)=ln(1z)n=1(eix)nn=ln(1+eix)=ln(1+cosx+isinx)=ln(2cos2(x2)+2isin(x2)cos(x2))=ln(2cos(x2)eix2)=ln(2cos(x2))ix2s(x)=x2s(x)dx=x24+c=n=1(1)nn2cos(nx)x=0c=n=1(1)nn2=(2121)ξ(2)=12π26=π212n=1(1)nn2cos(nx)=x24+π212n=1(1)nn3sin(nx)=x312+π212x+cx=0c=0n=1(1)nn3sin(nx)=x312+π2x12n=1(1)nn3sin(nx)=x12(π2x2)
Answered by mind is power last updated on 22/Sep/19
We have   limx→n ((π(x−n))/(sin(πx)))=(π/((sin(πx)_(x=n) ^′ ))=(−1)^n   let f(z)=((πsin(za) )/(z^3 sin(nπ)))  f has poles at z=n withe n∈Z^∗ of order 1 and in z=0 of order 3   let C_r  squar of side r and center in 0  ⇒∫_C_r  f(z)dz=Σ_Z_k  2iπ(Res (f∣z_k )  ′′Z_k ∈C_r ”  and  we have  lim ∣zf(z)∣⇒0  By jordan lemma we get Lim r→+∞∫_C_r  f(z)dz=0  Residus th ⇒Lim r→+∞ ∫_(cr) f(z)dz=Σ_(n∈^� IZ) 2iπRes(f(z)∣∣n)  ⇒0=Res(f∣0)+Σ_(n∈IZ^∗ ) Res(f∣n)  Res(f∣n)=lim z→n(((z−n)πsin(za))/(z^3 sin(πz)))=((πsin(na))/(n^3 πcos(nπ)))=(((−1)^n sin(na))/n^3 )  Res(f∣0) we use laurent serie  ((sin(za))/z^3 ).(π/(sin(πz)))=(((za−(((za)^3 )/6)...))/z^3 ).(1/(πz−((π^3 z^3 )/6)..))  =(1/z^3 )(a−((z^2 a^3 )/6)...)(1+((π^2 z^2 )/6)...)=(a/z^3 )+(1/z)(((aπ^2 )/6)−(a^3 /6))....  Res(f∣0)=(a/6)(−a^2 +π^2 )  ⇒Σ_(∣n∣≥1) (((−1)^n sin(na))/n^3 )−(a/6)(a^2 −π^2 )=0  ⇒2Σ_(n=1) ^(+∞) (((−1)^n sin(na))/n^3 )=(a/6)(a^2 −π^2 )  ⇒Σ_(n=1) ^(+∞) (((−1)^n sin(na))/n^3 )=(a/(12))(a^2 −π^2 )
Wehavelimxnπ(xn)sin(πx)=π(sin(πx)x=n=(1)nletf(z)=πsin(za)z3sin(nπ)fhaspolesatz=nwithenZoforder1andinz=0oforder3letCrsquarofsiderandcenterin0Crf(z)dz=Zk2iπ(Res(fzk)ZkCrandwehavelimzf(z)∣⇒0ByjordanlemmawegetLimr+Crf(z)dz=0ResidusthLimr+crf(z)dz=n^IZ2iπRes(f(z)∣∣n)0=Res(f0)+nIZRes(fn)Res(fn)=limzn(zn)πsin(za)z3sin(πz)=πsin(na)n3πcos(nπ)=(1)nsin(na)n3Res(f0)weuselaurentseriesin(za)z3.πsin(πz)=(za(za)36)z3.1πzπ3z36..=1z3(az2a36)(1+π2z26)=az3+1z(aπ26a36).Res(f0)=a6(a2+π2)n∣⩾1(1)nsin(na)n3a6(a2π2)=02n=1+(1)nsin(na)n3=a6(a2π2)n=1+(1)nsin(na)n3=a12(a2π2)

Leave a Reply

Your email address will not be published. Required fields are marked *