Menu Close

Use-the-limit-comparison-test-to-determine-if-the-series-converges-or-diverges-n-2-1-7-8n-ln-ln-n-




Question Number 140825 by liberty last updated on 13/May/21
Use the limit comparison test  to determine if the series converges  or diverges    Σ_(n=2) ^∞  (1/(7+8n ln (ln n))).
Usethelimitcomparisontesttodetermineiftheseriesconvergesordivergesn=217+8nln(lnn).
Answered by mathmax by abdo last updated on 13/May/21
let ϕ(x)=(1/(7+8nln(lnn)))  (n>2) ⇒ϕ^′ (x)=−(((7+8xlog(logx))^′ )/((7+8xlog(logx)^2 ))  =−((8log(logx) +8x×(1/(xlogx)))/((....)^2 )) =−((8log(logx)+(8/(logx)))/((....)^2 ))<0 ⇒ ϕ is decreazing  what about ∫_e ^∞  (dx/(7+8x log(logx)))  ?changement logx=t give  ∫_e ^∞  (dx/(7+8xlog(logx))) =∫_1 ^∞  ((e^t dt)/(7+8e^t log(t))) =∫_1 ^∞  (dt/(7e^(−t)  +8logt))  at +∞   (1/(7e^(−t)  +8logt))∼(1/(8logt)) and  ∫_1 ^∞  (dt/(logt)) =_(logt=u)    ∫_0 ^∞ (e^u /u)du     lim_(u→+∞) (√u).(e^u /u)=+∞ ⇒this integral diverges  ⇒Σ (1/(7+8nlog(logn))) diverges...!
letφ(x)=17+8nln(lnn)(n>2)φ(x)=(7+8xlog(logx))(7+8xlog(logx)2=8log(logx)+8x×1xlogx(.)2=8log(logx)+8logx(.)2<0φisdecreazingwhataboutedx7+8xlog(logx)?changementlogx=tgiveedx7+8xlog(logx)=1etdt7+8etlog(t)=1dt7et+8logtat+17et+8logt18logtand1dtlogt=logt=u0euudulimu+u.euu=+thisintegraldivergesΣ17+8nlog(logn)diverges!
Commented by liberty last updated on 13/May/21
why sir ∫_e ^∞  (dx/(7+8x ln (ln x))) ?  it should be ∫_2 ^∞ ... dx sir?
whysiredx7+8xln(lnx)?itshouldbe2dxsir?
Commented by Mathspace last updated on 13/May/21
∫_2 ^∞   ...dx and ∫_e ^(+∞) ...dx are the same  for convergence ( not value !)
2dxande+dxarethesameforconvergence(notvalue!)

Leave a Reply

Your email address will not be published. Required fields are marked *