Use-the-reduction-formula-to-rewrite-3-sin-x-3-cos-x-in-the-form-K-sin-x- Tinku Tara June 3, 2023 Trigonometry 0 Comments FacebookTweetPin Question Number 144072 by bobhans last updated on 21/Jun/21 Usethereductionformulatorewrite−3sinx−3cosxintheformKsin(x+α). Answered by liberty last updated on 21/Jun/21 because{a=−3b=−3wehaveK=a2+b2=32sincetheterminalsideofαmustgothrough(−3,−3)wehavecosα=−332=−22.Nowcos−1(22)=3π4buttheterminalsideof3π4isinquadrantII,howeverwealsohavecos(5π4)=−22andtheterminalsidefor5π4doespassthrough(−3,−3)inquadrantIIIsoα=5π4sogives−3sinx−3cosx=32sin(x+5π4). Answered by physicstutes last updated on 21/Jun/21 ksin(x+α)=ksinxcosα+kcosxsinα⇒kcosα=−3ksinα=−3k=32+32=32ksinαkcosα=1⇒tanα=1orα=π4theabovefunctionisinquadrant3,soweuseα=π4+π=5π4hence−3sinx−3cosx=32sin(x+5π4) Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: 3-x-3-x-y-2-1-5-x-2-2xy-y-2-x-y-3-2-5-Find-the-value-of-x-and-y-Next Next post: Question-78542 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.