Menu Close

Use-the-reduction-formula-to-rewrite-3-sin-x-3-cos-x-in-the-form-K-sin-x-




Question Number 144072 by bobhans last updated on 21/Jun/21
Use the reduction formula to  rewrite −3 sin x −3 cos x in the  form K sin (x+α) .
Usethereductionformulatorewrite3sinx3cosxintheformKsin(x+α).
Answered by liberty last updated on 21/Jun/21
because  { ((a=−3)),((b=−3)) :} we have K=(√(a^2 +b^2 ))=3(√2)   since the terminal side of α must go  through (−3,−3) we have   cos α = ((−3)/(3(√2))) =−((√2)/2) . Now cos^(−1) (((√2)/2))=((3π)/4)  but the terminal side of ((3π)/4) is in   quadrant II, however we also have   cos (((5π)/4))=−((√2)/2) and the terminal side  for ((5π)/4) does pass through (−3,−3) in  quadrant III so α=((5π)/4) so gives   −3sin x−3cos x = 3(√2) sin (x+((5π)/4)).
because{a=3b=3wehaveK=a2+b2=32sincetheterminalsideofαmustgothrough(3,3)wehavecosα=332=22.Nowcos1(22)=3π4buttheterminalsideof3π4isinquadrantII,howeverwealsohavecos(5π4)=22andtheterminalsidefor5π4doespassthrough(3,3)inquadrantIIIsoα=5π4sogives3sinx3cosx=32sin(x+5π4).
Answered by physicstutes last updated on 21/Jun/21
k sin(x + α) = k sin x cos α + k cos x sin α   ⇒ k cos α = −3      k sin α = −3  k = (√(3^2 +3^2 )) = 3(√2)   ((ksin α)/(k cos α)) = 1 ⇒  tan α = 1 or α = (π/4)  the above function is in quadrant 3 , so we use  α = (π/4)+π = ((5π)/4)  hence  −3 sin x − 3 cos x = 3(√2) sin (x+((5π)/4))
ksin(x+α)=ksinxcosα+kcosxsinαkcosα=3ksinα=3k=32+32=32ksinαkcosα=1tanα=1orα=π4theabovefunctionisinquadrant3,soweuseα=π4+π=5π4hence3sinx3cosx=32sin(x+5π4)

Leave a Reply

Your email address will not be published. Required fields are marked *