Use-the-reduction-formular-I-n-sin-n-x-dx-1-n-sin-n-1-x-cos-x-n-1-n-I-n-2-to-evaluate-I-n-sin-6-x-dx- Tinku Tara June 3, 2023 Integration 0 Comments FacebookTweetPin Question Number 12535 by tawa last updated on 24/Apr/17 Usethereductionformular.In=∫sinn(x)dx=−1nsinn−1(x)cos(x)+n−1nIn−2,toevaluateIn=∫sin6(x)dx Answered by mrW1 last updated on 25/Apr/17 In=∫sinn(x)dx=−1nsinn−1(x)cos(x)+n−1nIn−2I6=∫sin6xdx=−16sin5xcosx+56∫sin4xdxI4=∫sin4xdx=−14sin3xcosx+34∫sin2xdxI2=∫sin2xdx=−12sinxcosx+12∫dx=12x−sin2x4I4=−14sin3xcosx+34(12x−sin2x4)=38x−316sin2x−14sin3cosxI6=−16sin5xcosx+56[38x−316sin2x−14sin3cosx]=516x−532sin2x−124sin3cosx−16sin5xcosx+C Commented by tawa last updated on 25/Apr/17 wow,Godblessyousir. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-143606Next Next post: anyone-have-Lambert-W-function-formula-please-post-in-forum- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.