Menu Close

Use-the-substitution-t-sin-to-solve-the-equation-2sin-4-9sin-3-14sin-2-9sin-2-0-for-possible-values-of-in-the-range-0-2pi-




Question Number 12525 by tawa last updated on 24/Apr/17
Use the substitution  t = sin(θ) to solve the equation   2sin^4 (θ) − 9sin^3 (θ) + 14sin^2 (θ) − 9sin(θ) + 2 = 0,    for possible values of θ in the range  0 ≤ θ ≤ 2π
Usethesubstitutiont=sin(θ)tosolvetheequation2sin4(θ)9sin3(θ)+14sin2(θ)9sin(θ)+2=0,forpossiblevaluesofθintherange0θ2π
Answered by mrW1 last updated on 24/Apr/17
x=sin θ  2x^4 −9x^3 +14x^2 −9x+2=0  (2x−1)(x^3 −4x^2 +5x−2)=0  (2x−1)(x−2)(x^2 −2x+1)=0x  (2x−1)(x−2)(x−1)^2 =0  ⇒x=(1/2)⇒θ=(π/6),((5π)/6)  ⇒x=2 (no solution, since −1≤x≤1)  ⇒x=1⇒θ=(π/2)
x=sinθ2x49x3+14x29x+2=0(2x1)(x34x2+5x2)=0(2x1)(x2)(x22x+1)=0x(2x1)(x2)(x1)2=0x=12θ=π6,5π6x=2(nosolution,since1x1)x=1θ=π2
Commented by tawa last updated on 24/Apr/17
God bless you sir. Thanks for the help.
Godblessyousir.Thanksforthehelp.
Answered by sma3l2996 last updated on 24/Apr/17
let t=sinθ  2t^4 −9t^3 +14t^2 −9t+2=0  (t−1)(t−2)(at^2 +bt+c)=0  ⇔(t^2 −3t+2)(at^2 +bt+c)=0  ⇔at^4 +bt^3 +ct^2 −3at^3 −3bt^2 −3ct+2at^2 +2bt+2c=0  a=2 ; 2c=2 ; b−3a=−9  a=2 ; c=1 ; b=−3  so 2t^4 −9t^3 +14t^2 −9t+2=(t−1)(t−2)(2t^2 −3t+1)=0  2t^2 −3t+1=0  t=1 or t=(1/2)  sinθ=1 or sinθ=(1/2) or sinθ=2 and that impossible  θ=(π/2) or θ=(π/6) or θ=((5π)/6)
lett=sinθ2t49t3+14t29t+2=0(t1)(t2)(at2+bt+c)=0(t23t+2)(at2+bt+c)=0at4+bt3+ct23at33bt23ct+2at2+2bt+2c=0a=2;2c=2;b3a=9a=2;c=1;b=3so2t49t3+14t29t+2=(t1)(t2)(2t23t+1)=02t23t+1=0t=1ort=12sinθ=1orsinθ=12orsinθ=2andthatimpossibleθ=π2orθ=π6orθ=5π6
Commented by tawa last updated on 24/Apr/17
God bless you sir. Thanks for the help.
Godblessyousir.Thanksforthehelp.

Leave a Reply

Your email address will not be published. Required fields are marked *