Question Number 142116 by Eric002 last updated on 26/May/21
$${use}\:{trigonometric}\:{substitution}\:{to}\:{solve} \\ $$$$\int\frac{{x}^{\mathrm{3}} }{\:\sqrt{\mathrm{9}−{x}^{\mathrm{2}} }}{dx} \\ $$
Answered by ZiYangLee last updated on 27/May/21
$$\int\frac{{x}^{\mathrm{3}} }{\:\sqrt{\mathrm{9}−{x}^{\mathrm{2}} }\:}\:{dx} \\ $$$${let}\:{x}=\mathrm{3sin}\:\theta,\:{dx}=\mathrm{3cos}\:\theta\:{d}\theta \\ $$$$=\int\frac{\mathrm{27}\:\mathrm{sin}^{\mathrm{3}} \theta}{\:\sqrt{\mathrm{9}−\mathrm{9}\:\mathrm{sin}^{\mathrm{2}} \theta}\:}\left(\mathrm{3}\:\mathrm{cos}\:\theta\:{d}\theta\right) \\ $$$$=\int\:\frac{\mathrm{9sin}^{\mathrm{3}} \theta}{\mathrm{cos}\:\theta}\left(\mathrm{3}\:\mathrm{cos}\:\theta\:{d}\theta\right) \\ $$$$=\mathrm{27}\int\:\mathrm{sin}^{\mathrm{3}} \theta\:{d}\theta \\ $$$$=\mathrm{27}\int\:\mathrm{sin}\:\theta\:\mathrm{sin}^{\mathrm{2}} \theta\:{d}\theta \\ $$$$=\mathrm{27}\int\:\mathrm{sin}\:\theta\:\left(\mathrm{1}−\mathrm{cos}^{\mathrm{2}} \theta\right)\:{d}\theta \\ $$$$=\mathrm{27}\int\:\mathrm{sin}\:\theta\:{d}\theta−\mathrm{27}\int\:\mathrm{sin}\:\theta\:\mathrm{cos}^{\mathrm{2}} \theta\:{d}\theta \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{let}\:{u}=\mathrm{cos}\:\theta\Rightarrow{du}=−\mathrm{sin}\:\theta\:{d}\theta \\ $$$$=\mathrm{27}\left(−\mathrm{cos}\:\theta\right)−\mathrm{27}\int\:{u}^{\mathrm{2}} \:\left(−{du}\right) \\ $$$$=\mathrm{27}\left(−\mathrm{cos}\:\theta\right)+\mathrm{27}\int\:{u}^{\mathrm{2}} \:{du} \\ $$$$=−\mathrm{27cos}\:\theta+\mathrm{9}{u}^{\mathrm{3}} +{C} \\ $$$$=−\mathrm{27cos}\:\theta+\mathrm{9}\:\mathrm{cos}^{\mathrm{3}} \theta+{C} \\ $$$$=−\mathrm{27}\left(\frac{\sqrt{\mathrm{9}−{x}^{\mathrm{2}} }}{\mathrm{3}}\right)+\mathrm{9}\left(\frac{\sqrt{\mathrm{9}−{x}^{\mathrm{2}} }}{\mathrm{3}}\right)^{\mathrm{3}} +{C} \\ $$$$=−\mathrm{9}\sqrt{\mathrm{9}−{x}^{\mathrm{2}} }+\frac{\left(\mathrm{9}−{x}^{\mathrm{2}} \right)^{\frac{\mathrm{3}}{\mathrm{2}}} }{\mathrm{3}}+{C}\:# \\ $$
Answered by mathmax by abdo last updated on 27/May/21
$$\Phi=\int\:\frac{\mathrm{x}^{\mathrm{3}} }{\:\sqrt{\mathrm{9}−\mathrm{x}^{\mathrm{2}} }}\mathrm{dx}\:\mathrm{changement}\:\mathrm{x}=\mathrm{3sint}\:\mathrm{give} \\ $$$$\Phi=\int\:\:\frac{\mathrm{27sin}^{\mathrm{3}} \mathrm{t}}{\mathrm{3}\:\mathrm{cost}}\left(\mathrm{3cost}\right)\mathrm{dt}\:=\mathrm{27}\:\int\:\:\mathrm{sin}^{\mathrm{3}} \mathrm{t}\:\mathrm{dt} \\ $$$$=\mathrm{27}\:\int\:\mathrm{sint}\left(\mathrm{1}−\mathrm{cos}^{\mathrm{2}} \mathrm{t}\right)\mathrm{dt}\:=\mathrm{27}\int\:\mathrm{sint}\:\mathrm{dt}−\mathrm{27}\int\:\mathrm{cos}^{\mathrm{2}} \mathrm{t}\:\mathrm{sintdt} \\ $$$$=−\mathrm{27}\:\mathrm{cost}\:+\mathrm{9}\:\mathrm{cos}^{\mathrm{3}} \mathrm{t}\:\:+\mathrm{C} \\ $$$$\left.=−\mathrm{27}\sqrt{\mathrm{1}−\mathrm{sin}^{\mathrm{2}} \mathrm{t}}+\mathrm{9}\left(\sqrt{\mathrm{1}−\mathrm{sin}^{\mathrm{2}} \mathrm{t}}\right)^{\mathrm{3}} \:\right)+\mathrm{C} \\ $$$$=−\mathrm{27}\sqrt{\mathrm{1}−\frac{\mathrm{x}^{\mathrm{2}} }{\mathrm{9}}}+\mathrm{9}\left(\sqrt{\mathrm{1}−\frac{\mathrm{x}^{\mathrm{2}} }{\mathrm{9}}}\right)^{\mathrm{3}} \:+\mathrm{C} \\ $$$$ \\ $$