use-trigonometric-substitution-to-solve-x-3-9-x-2-dx- Tinku Tara June 3, 2023 Integration 0 Comments FacebookTweetPin Question Number 142116 by Eric002 last updated on 26/May/21 usetrigonometricsubstitutiontosolve∫x39−x2dx Answered by ZiYangLee last updated on 27/May/21 ∫x39−x2dxletx=3sinθ,dx=3cosθdθ=∫27sin3θ9−9sin2θ(3cosθdθ)=∫9sin3θcosθ(3cosθdθ)=27∫sin3θdθ=27∫sinθsin2θdθ=27∫sinθ(1−cos2θ)dθ=27∫sinθdθ−27∫sinθcos2θdθletu=cosθ⇒du=−sinθdθ=27(−cosθ)−27∫u2(−du)=27(−cosθ)+27∫u2du=−27cosθ+9u3+C=−27cosθ+9cos3θ+C=−27(9−x23)+9(9−x23)3+CYou can't use 'macro parameter character #' in math modeYou can't use 'macro parameter character #' in math mode Answered by mathmax by abdo last updated on 27/May/21 Φ=∫x39−x2dxchangementx=3sintgiveΦ=∫27sin3t3cost(3cost)dt=27∫sin3tdt=27∫sint(1−cos2t)dt=27∫sintdt−27∫cos2tsintdt=−27cost+9cos3t+C=−271−sin2t+9(1−sin2t)3)+C=−271−x29+9(1−x29)3+C Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: A-uniform-ladder-of-weight-W-and-length-2a-rest-in-limiting-equilibrium-with-one-end-on-a-rough-horizontal-ground-and-the-other-end-on-a-rough-vertical-wall-The-coefficient-of-friction-between-the-lNext Next post: Question-76585 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.