Menu Close

use-trigonometric-substitution-to-solve-x-3-9-x-2-dx-




Question Number 142116 by Eric002 last updated on 26/May/21
use trigonometric substitution to solve  ∫(x^3 /( (√(9−x^2 ))))dx
usetrigonometricsubstitutiontosolvex39x2dx
Answered by ZiYangLee last updated on 27/May/21
∫(x^3 /( (√(9−x^2 )) )) dx  let x=3sin θ, dx=3cos θ dθ  =∫((27 sin^3 θ)/( (√(9−9 sin^2 θ)) ))(3 cos θ dθ)  =∫ ((9sin^3 θ)/(cos θ))(3 cos θ dθ)  =27∫ sin^3 θ dθ  =27∫ sin θ sin^2 θ dθ  =27∫ sin θ (1−cos^2 θ) dθ  =27∫ sin θ dθ−27∫ sin θ cos^2 θ dθ                                         let u=cos θ⇒du=−sin θ dθ  =27(−cos θ)−27∫ u^2  (−du)  =27(−cos θ)+27∫ u^2  du  =−27cos θ+9u^3 +C  =−27cos θ+9 cos^3 θ+C  =−27(((√(9−x^2 ))/3))+9(((√(9−x^2 ))/3))^3 +C  =−9(√(9−x^2 ))+(((9−x^2 )^(3/2) )/3)+C #
x39x2dxletx=3sinθ,dx=3cosθdθ=27sin3θ99sin2θ(3cosθdθ)=9sin3θcosθ(3cosθdθ)=27sin3θdθ=27sinθsin2θdθ=27sinθ(1cos2θ)dθ=27sinθdθ27sinθcos2θdθletu=cosθdu=sinθdθ=27(cosθ)27u2(du)=27(cosθ)+27u2du=27cosθ+9u3+C=27cosθ+9cos3θ+C=27(9x23)+9(9x23)3+CYou can't use 'macro parameter character #' in math mode
Answered by mathmax by abdo last updated on 27/May/21
Φ=∫ (x^3 /( (√(9−x^2 ))))dx changement x=3sint give  Φ=∫  ((27sin^3 t)/(3 cost))(3cost)dt =27 ∫  sin^3 t dt  =27 ∫ sint(1−cos^2 t)dt =27∫ sint dt−27∫ cos^2 t sintdt  =−27 cost +9 cos^3 t  +C  =−27(√(1−sin^2 t))+9((√(1−sin^2 t)))^3  )+C  =−27(√(1−(x^2 /9)))+9((√(1−(x^2 /9))))^3  +C
Φ=x39x2dxchangementx=3sintgiveΦ=27sin3t3cost(3cost)dt=27sin3tdt=27sint(1cos2t)dt=27sintdt27cos2tsintdt=27cost+9cos3t+C=271sin2t+9(1sin2t)3)+C=271x29+9(1x29)3+C

Leave a Reply

Your email address will not be published. Required fields are marked *