Menu Close

using-variation-of-parameters-method-x-2-2-y-x-2-y-2x-4-x-2-y-2xy-2y-x-2-lnx-3x-




Question Number 67759 by ugwu Kingsley last updated on 31/Aug/19
using variation of parameters method    (x+2)^2 y′′−(x+2)y′=2x+4      x^2 y′′+2xy′−2y=x^2 lnx+3x
usingvariationofparametersmethod(x+2)2y(x+2)y=2x+4x2y+2xy2y=x2lnx+3x
Commented by mathmax by abdo last updated on 31/Aug/19
1) changement y^′ =z give  (x+2)^2 z′−(x+2)z =2x+4  (he)→(x+2)^2 z^′ −(x+2)z =0 ⇒(x+2)^2 z^′ =(x+2)z ⇒  (z^′ /z) =((x+2)/((x+2)^2 )) ⇒(z^′ /z) =(1/(x+2)) ⇒ln∣z∣=ln∣x+2∣+c ⇒z =K∣x+2∣let find  the solution on]−2,+∞[let use   mvc method ⇒z^′ =K^′ (x+2)+K  (e) ⇒(x+2)^2 K^′ (x+2) +K(x+2)^2 −(x+2)K(x+2) =2x+4 ⇒  (x+2)^3  K^′  =2(x+2) ⇒K^′  =(2/((x+2)^2 )) ⇒K(x)=−(2/(x+2)) +c ⇒  z(x) =(−(2/(x+2))+c)(x+2) =−2 +c    y^′ =z ⇒y(x) =∫z(x) dx +λ  =∫(−2+c)dx +λ  =(−2+c)x +λ
1)changementy=zgive(x+2)2z(x+2)z=2x+4(he)(x+2)2z(x+2)z=0(x+2)2z=(x+2)zzz=x+2(x+2)2zz=1x+2lnz∣=lnx+2+cz=Kx+2letfindthesolutionon]2,+[letusemvcmethodz=K(x+2)+K(e)(x+2)2K(x+2)+K(x+2)2(x+2)K(x+2)=2x+4(x+2)3K=2(x+2)K=2(x+2)2K(x)=2x+2+cz(x)=(2x+2+c)(x+2)=2+cy=zy(x)=z(x)dx+λ=(2+c)dx+λ=(2+c)x+λ

Leave a Reply

Your email address will not be published. Required fields are marked *