Menu Close

Using-vector-method-prove-that-three-median-of-a-triangle-are-concurrent-




Question Number 140735 by ZiYangLee last updated on 12/May/21
Using vector method, prove that three  median of a triangle are concurrent.
Usingvectormethod,provethatthreemedianofatriangleareconcurrent.
Answered by MJS_new last updated on 12/May/21
let A= ((0),(0) ) ∧B= ((c),(0) ) ∧C= ((p),(h) )  M_a =((B+C)/2)= ((((c+p)/2)),((h/2)) )     M_b =((A+C)/2)= (((p/2)),((h/2)) )     M_c =((A+B)/2)= (((c/2)),(0) )  v_a =C−B= (((p−c)),(h) )     v_b =A−C= (((−p)),((−h)) )     v_c =B−A= ((c),(0) )  n_a = (((−h)),((p−c)) )     n_b = ((h),((−p)) )     n_c = ((0),(c) )  medians  m_a : X=M_a +λ_a n_a  ⇔ y=((c−p)/h)x−((c^2 −h^2 −p^2 )/(2h))     (I)  m_b : X=M_b +λ_b n_b  ⇔ y=−(p/h)x+((h^2 +p^2 )/(2h))     (II)  m_c : X=M_c +λ_c n_c  ⇔ x=(c/2)  inserting x=(c/2) in both equations I and II we get  the same value for y  y=((−cp+h^2 +p^2 )/(2h))  ⇒ m_a ∩m_b ∩m_c = (((c/2)),(((−cp+h^2 +p^2 )/(2h))) )
letA=(00)B=(c0)C=(ph)Ma=B+C2=(c+p2h2)Mb=A+C2=(p2h2)Mc=A+B2=(c20)va=CB=(pch)vb=AC=(ph)vc=BA=(c0)na=(hpc)nb=(hp)nc=(0c)mediansma:X=Ma+λanay=cphxc2h2p22h(I)mb:X=Mb+λbnby=phx+h2+p22h(II)mc:X=Mc+λcncx=c2insertingx=c2inbothequationsIandIIwegetthesamevalueforyy=cp+h2+p22hmambmc=(c2cp+h2+p22h)
Answered by peter frank last updated on 12/May/21
Commented by peter frank last updated on 12/May/21
The median of triangle cuts another  median in ratio (2:1)  from AD→E(((B^→ +C^→ )/2))  P=((1×A+((2(B^→ +C^→ ))/2))/3)=((A^→ +B^→ +C^→ )/3)  from BE→(((A^→ +C^→ )/2))    P=((1×B+((2(A^→ +C^→ ))/2))/3)=((A^→ +B^→ +C^→ )/3)  from FC→(((A^→ +B^→ )/2))  P=((1×C+((2(A^→ +B^→ ))/2))/3)=((A^→ +B^→ +C^→ )/3)  hence its concurent
Themedianoftrianglecutsanothermedianinratio(2:1)fromADE(B+C2)P=1×A+2(B+C)23=A+B+C3fromBE(A+C2)P=1×B+2(A+C)23=A+B+C3fromFC(A+B2)P=1×C+2(A+B)23=A+B+C3henceitsconcurent

Leave a Reply

Your email address will not be published. Required fields are marked *