Menu Close

v-x-f-x-f-x-mx-b-If-I-wish-to-rotate-v-counter-clockwise-by-degrees-how-does-one-do-so-where-v-is-rotated-about-the-origin-v-is-rotated-about-the-point-x-1-f-x-1-What-a




Question Number 7372 by FilupSmith last updated on 25/Aug/16
v= [(x),((f(x))) ],  f(x)=mx+b  If I wish to rotate v counter clockwise  by θ degrees, how does one do so where:  •   v is rotated about the origin  •   v is rotated about the point (x_1 , f(x_1 ))  What are the new vectors?
$$\boldsymbol{{v}}=\begin{bmatrix}{{x}}\\{{f}\left({x}\right)}\end{bmatrix},\:\:{f}\left({x}\right)={mx}+{b} \\ $$$$\mathrm{If}\:\mathrm{I}\:\mathrm{wish}\:\mathrm{to}\:\mathrm{rotate}\:\boldsymbol{{v}}\:\mathrm{counter}\:\mathrm{clockwise} \\ $$$$\mathrm{by}\:\theta\:\mathrm{degrees},\:\mathrm{how}\:\mathrm{does}\:\mathrm{one}\:\mathrm{do}\:\mathrm{so}\:\mathrm{where}: \\ $$$$\bullet\:\:\:\boldsymbol{{v}}\:\mathrm{is}\:\mathrm{rotated}\:\mathrm{about}\:\mathrm{the}\:\mathrm{origin} \\ $$$$\bullet\:\:\:\boldsymbol{{v}}\:\mathrm{is}\:\mathrm{rotated}\:\mathrm{about}\:\mathrm{the}\:\mathrm{point}\:\left({x}_{\mathrm{1}} ,\:{f}\left({x}_{\mathrm{1}} \right)\right) \\ $$$$\mathrm{What}\:\mathrm{are}\:\mathrm{the}\:\mathrm{new}\:\mathrm{vectors}? \\ $$
Answered by sandy_suhendra last updated on 25/Aug/16
if we rotate by θ° about the origin, the matrix is  [((cos θ     −sin θ)),((sin θ         cos θ)) ]  the new vector v′ = [((cos θ   −sin θ)),((sin θ      cos θ)) ] [(x),((f(x))) ]=  [((x cos θ−f(x) sin θ)),((x sin θ+f(x) cos θ)) ]  if we rotated about the point (x_1  , f(x_1 ))  the new vector v′ =  [((cos θ    −sin θ)),((sin θ        cos θ)) ] [((x−x_1 )),((f(x)−f(x_1 ))) ]+ [(x_1 ),((f(x_1 ))) ]                                         =  [(((x−x_1 )cos θ+[f(x_1 )−f(x)]sin θ+x_1 )),(((x−x_1 )sin θ+[f(x)−f(x_1 )]cos θ+f(x_1 ))) ]
$${if}\:{we}\:{rotate}\:{by}\:\theta°\:{about}\:{the}\:{origin},\:{the}\:{matrix}\:{is}\:\begin{bmatrix}{{cos}\:\theta\:\:\:\:\:−{sin}\:\theta}\\{{sin}\:\theta\:\:\:\:\:\:\:\:\:{cos}\:\theta}\end{bmatrix} \\ $$$${the}\:{new}\:{vector}\:\boldsymbol{{v}}'\:=\begin{bmatrix}{{cos}\:\theta\:\:\:−{sin}\:\theta}\\{{sin}\:\theta\:\:\:\:\:\:{cos}\:\theta}\end{bmatrix}\begin{bmatrix}{{x}}\\{{f}\left({x}\right)}\end{bmatrix}=\:\begin{bmatrix}{{x}\:{cos}\:\theta−{f}\left({x}\right)\:{sin}\:\theta}\\{{x}\:{sin}\:\theta+{f}\left({x}\right)\:{cos}\:\theta}\end{bmatrix} \\ $$$${if}\:{we}\:{rotated}\:{about}\:{the}\:{point}\:\left({x}_{\mathrm{1}} \:,\:{f}\left({x}_{\mathrm{1}} \right)\right) \\ $$$${the}\:{new}\:{vector}\:\boldsymbol{{v}}'\:=\:\begin{bmatrix}{{cos}\:\theta\:\:\:\:−{sin}\:\theta}\\{{sin}\:\theta\:\:\:\:\:\:\:\:{cos}\:\theta}\end{bmatrix}\begin{bmatrix}{{x}−{x}_{\mathrm{1}} }\\{{f}\left({x}\right)−{f}\left({x}_{\mathrm{1}} \right)}\end{bmatrix}+\begin{bmatrix}{{x}_{\mathrm{1}} }\\{{f}\left({x}_{\mathrm{1}} \right)}\end{bmatrix} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\:\begin{bmatrix}{\left({x}−{x}_{\mathrm{1}} \right){cos}\:\theta+\left[{f}\left({x}_{\mathrm{1}} \right)−{f}\left({x}\right)\right]{sin}\:\theta+{x}_{\mathrm{1}} }\\{\left({x}−{x}_{\mathrm{1}} \right){sin}\:\theta+\left[{f}\left({x}\right)−{f}\left({x}_{\mathrm{1}} \right)\right]{cos}\:\theta+{f}\left({x}_{\mathrm{1}} \right)}\end{bmatrix} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *