Menu Close

v-x-f-x-f-x-mx-b-If-I-wish-to-rotate-v-counter-clockwise-by-degrees-how-does-one-do-so-where-v-is-rotated-about-the-origin-v-is-rotated-about-the-point-x-1-f-x-1-What-a




Question Number 7372 by FilupSmith last updated on 25/Aug/16
v= [(x),((f(x))) ],  f(x)=mx+b  If I wish to rotate v counter clockwise  by θ degrees, how does one do so where:  •   v is rotated about the origin  •   v is rotated about the point (x_1 , f(x_1 ))  What are the new vectors?
v=[xf(x)],f(x)=mx+bIfIwishtorotatevcounterclockwisebyθdegrees,howdoesonedosowhere:visrotatedabouttheoriginvisrotatedaboutthepoint(x1,f(x1))Whatarethenewvectors?
Answered by sandy_suhendra last updated on 25/Aug/16
if we rotate by θ° about the origin, the matrix is  [((cos θ     −sin θ)),((sin θ         cos θ)) ]  the new vector v′ = [((cos θ   −sin θ)),((sin θ      cos θ)) ] [(x),((f(x))) ]=  [((x cos θ−f(x) sin θ)),((x sin θ+f(x) cos θ)) ]  if we rotated about the point (x_1  , f(x_1 ))  the new vector v′ =  [((cos θ    −sin θ)),((sin θ        cos θ)) ] [((x−x_1 )),((f(x)−f(x_1 ))) ]+ [(x_1 ),((f(x_1 ))) ]                                         =  [(((x−x_1 )cos θ+[f(x_1 )−f(x)]sin θ+x_1 )),(((x−x_1 )sin θ+[f(x)−f(x_1 )]cos θ+f(x_1 ))) ]
ifwerotatebyθ°abouttheorigin,thematrixis[cosθsinθsinθcosθ]thenewvectorv=[cosθsinθsinθcosθ][xf(x)]=[xcosθf(x)sinθxsinθ+f(x)cosθ]ifwerotatedaboutthepoint(x1,f(x1))thenewvectorv=[cosθsinθsinθcosθ][xx1f(x)f(x1)]+[x1f(x1)]=[(xx1)cosθ+[f(x1)f(x)]sinθ+x1(xx1)sinθ+[f(x)f(x1)]cosθ+f(x1)]

Leave a Reply

Your email address will not be published. Required fields are marked *