Menu Close

Verify-the-convergence-of-the-exponential-series-e-x-using-D-Alermbert-ratio-test-




Question Number 6267 by sanusihammed last updated on 21/Jun/16
Verify the convergence of the exponential series  e^x   using D′Alermbert ratio test.
VerifytheconvergenceoftheexponentialseriesexusingDAlermbertratiotest.
Commented by Yozzii last updated on 21/Jun/16
u_r =(x^r /(r!))⇒(u_(r+1) /u_r )=((x^(r+1) r!)/((r+1)!x^r ))=(x/(r+1))  ∴ lim_(r→∞) ∣(u_(r+1) /u_r )∣=lim_(r→∞) ((∣x∣)/(r+1))=((∣x∣)/∞)=0<1  ∵ lim_(r→∞) ∣(u_(r+1) /u_r )∣<1 for any x∈C, then e^x =Σ_(r=0) ^∞ (x^r /(r!))   is convergent for all x according to  D′Alambert′s Ratio test.
ur=xrr!ur+1ur=xr+1r!(r+1)!xr=xr+1limrur+1ur∣=limrxr+1=x=0<1limrur+1ur∣<1foranyxC,thenex=r=0xrr!isconvergentforallxaccordingtoDAlambertsRatiotest.
Commented by sanusihammed last updated on 21/Jun/16
Thanks for help
Thanksforhelp

Leave a Reply

Your email address will not be published. Required fields are marked *