Menu Close

Verify-the-convergence-of-the-exponential-series-e-x-using-D-Alermbert-ratio-test-




Question Number 6267 by sanusihammed last updated on 21/Jun/16
Verify the convergence of the exponential series  e^x   using D′Alermbert ratio test.
$${Verify}\:{the}\:{convergence}\:{of}\:{the}\:{exponential}\:{series}\:\:{e}^{{x}} \\ $$$${using}\:{D}'{Alermbert}\:{ratio}\:{test}. \\ $$
Commented by Yozzii last updated on 21/Jun/16
u_r =(x^r /(r!))⇒(u_(r+1) /u_r )=((x^(r+1) r!)/((r+1)!x^r ))=(x/(r+1))  ∴ lim_(r→∞) ∣(u_(r+1) /u_r )∣=lim_(r→∞) ((∣x∣)/(r+1))=((∣x∣)/∞)=0<1  ∵ lim_(r→∞) ∣(u_(r+1) /u_r )∣<1 for any x∈C, then e^x =Σ_(r=0) ^∞ (x^r /(r!))   is convergent for all x according to  D′Alambert′s Ratio test.
$${u}_{{r}} =\frac{{x}^{{r}} }{{r}!}\Rightarrow\frac{{u}_{{r}+\mathrm{1}} }{{u}_{{r}} }=\frac{{x}^{{r}+\mathrm{1}} {r}!}{\left({r}+\mathrm{1}\right)!{x}^{{r}} }=\frac{{x}}{{r}+\mathrm{1}} \\ $$$$\therefore\:\underset{{r}\rightarrow\infty} {\mathrm{lim}}\mid\frac{{u}_{{r}+\mathrm{1}} }{{u}_{{r}} }\mid=\underset{{r}\rightarrow\infty} {\mathrm{lim}}\frac{\mid{x}\mid}{{r}+\mathrm{1}}=\frac{\mid{x}\mid}{\infty}=\mathrm{0}<\mathrm{1} \\ $$$$\because\:\underset{{r}\rightarrow\infty} {\mathrm{lim}}\mid\frac{{u}_{{r}+\mathrm{1}} }{{u}_{{r}} }\mid<\mathrm{1}\:{for}\:{any}\:{x}\in\mathbb{C},\:{then}\:{e}^{{x}} =\underset{{r}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{{x}^{{r}} }{{r}!}\: \\ $$$${is}\:{convergent}\:{for}\:{all}\:{x}\:{according}\:{to} \\ $$$${D}'{Alambert}'{s}\:{Ratio}\:{test}. \\ $$
Commented by sanusihammed last updated on 21/Jun/16
Thanks for help
$${Thanks}\:{for}\:{help} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *