Menu Close

very-nice-integral-4x-3-4x-2-4x-3-x-2-1-x-2-x-1-2-dx-




Question Number 132333 by liberty last updated on 13/Feb/21
 very nice integral  ∫ ((4x^3 +4x^2 +4x+3)/((x^2 +1)(x^2 +x+1)^2 )) dx?
veryniceintegral4x3+4x2+4x+3(x2+1)(x2+x+1)2dx?
Answered by EDWIN88 last updated on 13/Feb/21
well... let me try  Ostrogradsky method  the integral has form   ∫ ((4x^3 +4x^2 +4x+3)/((x^2 +1)(x^2 +x+1)^2 )) dx=((ax+b)/(x^2 +x+1)) +∫ ((cx^3 +dx^2 +ex+f)/((x^2 +1)(x^2 +x+1))) dx  differentiating both sides   ((4x^3 +4x^2 +4x+3)/((x^2 +1)(x^2 +x+1)^2 )) = ((a(x^2 +x+1)−(ax+b)(2x+1))/((x^2 +x+1)^2 ))+((cx^3 +dx^2 +ex+f)/((x^2 +1)(x^2 +x+1)))  after solving the coefficients we get  a=1 , b=−1 ,c=0 , d=1 ,e=1 ,f = 1  then I = ((x−1)/(x^2 +x+1)) +∫ ((x^2 +x+1)/((x^2 +1)(x^2 +x+1)))dx  I= ((x−1)/(x^2 +x+1)) + ∫ (dx/(x^2 +1))= ((x−1)/(x^2 +x+1))+ arctan (x) + C
wellletmetryOstrogradskymethodtheintegralhasform4x3+4x2+4x+3(x2+1)(x2+x+1)2dx=ax+bx2+x+1+cx3+dx2+ex+f(x2+1)(x2+x+1)dxdifferentiatingbothsides4x3+4x2+4x+3(x2+1)(x2+x+1)2=a(x2+x+1)(ax+b)(2x+1)(x2+x+1)2+cx3+dx2+ex+f(x2+1)(x2+x+1)aftersolvingthecoefficientswegeta=1,b=1,c=0,d=1,e=1,f=1thenI=x1x2+x+1+x2+x+1(x2+1)(x2+x+1)dxI=x1x2+x+1+dxx2+1=x1x2+x+1+arctan(x)+C
Commented by liberty last updated on 13/Feb/21
  scho^  ne Lo^  sung
schone¨Losung¨
Commented by SLVR last updated on 13/Feb/21
great job...nice sir
greatjobnicesir
Commented by SLVR last updated on 13/Feb/21
but on differentiaion of RHS 1st part denominator  has no sqare...how...to proceed..
butondifferentiaionofRHS1stpartdenominatorhasnosqarehowtoproceed..
Commented by EDWIN88 last updated on 13/Feb/21
oh it is only typo
ohitisonlytypo
Commented by SLVR last updated on 13/Feb/21
welcome sir..
welcomesir..
Answered by EDWIN88 last updated on 13/Feb/21
∫ ((P(x))/(Q(x))) dx = ((P_1 (x))/(Q_1 (x))) + ∫ ((P_2 (x))/(Q_2 (x))) dx   where Q_1 (x)is gcd of Q(x) and Q′(x)  Q_2 (x)=((Q(x))/(Q_1 (x))) and P_1 (x) and P_2 (x) are   unknown polynomials of degree one less  than Q_1 (x) and Q_2 (x) respectively .   from the equation Q(x)=(x^2 +1)(x^2 +x+1)^2   Q′(x)=2x(x^2 +x+1)^2 +2(x^2 +1)(2x+1)(x^2 +x+1)  the gcd of Q(x) and Q′(x) is Q_1 (x)=x^2 +x+1  and Q_2 (x)=((Q(x))/(Q_1 (x)))= (x^2 +1)(x^2 +x+1)
P(x)Q(x)dx=P1(x)Q1(x)+P2(x)Q2(x)dxwhereQ1(x)isgcdofQ(x)andQ(x)Q2(x)=Q(x)Q1(x)andP1(x)andP2(x)areunknownpolynomialsofdegreeonelessthanQ1(x)andQ2(x)respectively.fromtheequationQ(x)=(x2+1)(x2+x+1)2Q(x)=2x(x2+x+1)2+2(x2+1)(2x+1)(x2+x+1)thegcdofQ(x)andQ(x)isQ1(x)=x2+x+1andQ2(x)=Q(x)Q1(x)=(x2+1)(x2+x+1)

Leave a Reply

Your email address will not be published. Required fields are marked *