Menu Close

we-give-U-1-U-2-U-3-the-terms-of-a-geometric-sequence-Determine-U-1-U-2-U-3-such-that-U-1-U-2-U-3-64-U-1-2-U-2-2-U-3-2-84-




Question Number 12566 by JAZAR last updated on 25/Apr/17
we give U_1 ,U_2 ,U_3  the terms of a geometric sequence  .Determine U_1 ,U_2 ,U_3  such that :     { ((U_1 .U_2 .U_3 =64)),((U_1 ^2 +U_2 ^2 +U_3 ^2 =84)) :}
$${we}\:{give}\:{U}_{\mathrm{1}} ,{U}_{\mathrm{2}} ,{U}_{\mathrm{3}} \:{the}\:{terms}\:{of}\:{a}\:{geometric}\:{sequence} \\ $$$$.{Determine}\:{U}_{\mathrm{1}} ,{U}_{\mathrm{2}} ,{U}_{\mathrm{3}} \:{such}\:{that}\:: \\ $$$$ \\ $$$$\begin{cases}{{U}_{\mathrm{1}} .{U}_{\mathrm{2}} .{U}_{\mathrm{3}} =\mathrm{64}}\\{{U}_{\mathrm{1}} ^{\mathrm{2}} +{U}_{\mathrm{2}} ^{\mathrm{2}} +{U}_{\mathrm{3}} ^{\mathrm{2}} =\mathrm{84}}\end{cases} \\ $$$$ \\ $$
Answered by sandy_suhendra last updated on 25/Apr/17
U_1 =a  U_2 =ar  U_3 =ar^2   U_1 .U_2 .U_3 =64  a.ar.ar^2 =64  a^3 r^3 =64  ar=4=U_2  ⇒ a=(4/r)=U_1   U_3 =ar^2 =ar.r=4r    U_1 ^2 +U_2 ^2 +U_3 ^2  = 84  ((4/r))^2 + 4^2  +(4r)^2 =84  ((16)/r^2 )+16+16r^2 =84  16r^2 −68+((16)/r^2 ) = 0  multiplied by ((r^2 /4))       4r^4 −17r^2 +4=0  (4r^2 −1)(r^2 −4)=0  r=±(1/2)  or  r=±2  if r=−(1/2) ⇒U_1 =−8 ; U_2 =4 ; U_3 =−2       if r=(1/2) ⇒ U_1 =8 ; U_2 =4 ; U_3 =2  if r=−2 ⇒ U_1 =−2 ; U_2 =4 ; U_3 =−8  if r=2 ⇒U_1 =2 ; U_2 =4 ; U_3 =8
$$\mathrm{U}_{\mathrm{1}} =\mathrm{a} \\ $$$$\mathrm{U}_{\mathrm{2}} =\mathrm{ar} \\ $$$$\mathrm{U}_{\mathrm{3}} =\mathrm{ar}^{\mathrm{2}} \\ $$$$\mathrm{U}_{\mathrm{1}} .\mathrm{U}_{\mathrm{2}} .\mathrm{U}_{\mathrm{3}} =\mathrm{64} \\ $$$$\mathrm{a}.\mathrm{ar}.\mathrm{ar}^{\mathrm{2}} =\mathrm{64} \\ $$$$\mathrm{a}^{\mathrm{3}} \mathrm{r}^{\mathrm{3}} =\mathrm{64} \\ $$$$\mathrm{ar}=\mathrm{4}=\mathrm{U}_{\mathrm{2}} \:\Rightarrow\:\mathrm{a}=\frac{\mathrm{4}}{\mathrm{r}}=\mathrm{U}_{\mathrm{1}} \\ $$$$\mathrm{U}_{\mathrm{3}} =\mathrm{ar}^{\mathrm{2}} =\mathrm{ar}.\mathrm{r}=\mathrm{4r} \\ $$$$ \\ $$$$\mathrm{U}_{\mathrm{1}} ^{\mathrm{2}} +\mathrm{U}_{\mathrm{2}} ^{\mathrm{2}} +\mathrm{U}_{\mathrm{3}} ^{\mathrm{2}} \:=\:\mathrm{84} \\ $$$$\left(\frac{\mathrm{4}}{\mathrm{r}}\right)^{\mathrm{2}} +\:\mathrm{4}^{\mathrm{2}} \:+\left(\mathrm{4r}\right)^{\mathrm{2}} =\mathrm{84} \\ $$$$\frac{\mathrm{16}}{\mathrm{r}^{\mathrm{2}} }+\mathrm{16}+\mathrm{16r}^{\mathrm{2}} =\mathrm{84} \\ $$$$\mathrm{16r}^{\mathrm{2}} −\mathrm{68}+\frac{\mathrm{16}}{\mathrm{r}^{\mathrm{2}} }\:=\:\mathrm{0}\:\:\mathrm{multiplied}\:\mathrm{by}\:\left(\frac{\mathrm{r}^{\mathrm{2}} }{\mathrm{4}}\right)\:\:\:\:\: \\ $$$$\mathrm{4r}^{\mathrm{4}} −\mathrm{17r}^{\mathrm{2}} +\mathrm{4}=\mathrm{0} \\ $$$$\left(\mathrm{4r}^{\mathrm{2}} −\mathrm{1}\right)\left(\mathrm{r}^{\mathrm{2}} −\mathrm{4}\right)=\mathrm{0} \\ $$$$\mathrm{r}=\pm\frac{\mathrm{1}}{\mathrm{2}}\:\:\mathrm{or}\:\:\mathrm{r}=\pm\mathrm{2} \\ $$$$\mathrm{if}\:\mathrm{r}=−\frac{\mathrm{1}}{\mathrm{2}}\:\Rightarrow\mathrm{U}_{\mathrm{1}} =−\mathrm{8}\:;\:\mathrm{U}_{\mathrm{2}} =\mathrm{4}\:;\:\mathrm{U}_{\mathrm{3}} =−\mathrm{2}\:\:\:\:\: \\ $$$$\mathrm{if}\:\mathrm{r}=\frac{\mathrm{1}}{\mathrm{2}}\:\Rightarrow\:\mathrm{U}_{\mathrm{1}} =\mathrm{8}\:;\:\mathrm{U}_{\mathrm{2}} =\mathrm{4}\:;\:\mathrm{U}_{\mathrm{3}} =\mathrm{2} \\ $$$$\mathrm{if}\:\mathrm{r}=−\mathrm{2}\:\Rightarrow\:\mathrm{U}_{\mathrm{1}} =−\mathrm{2}\:;\:\mathrm{U}_{\mathrm{2}} =\mathrm{4}\:;\:\mathrm{U}_{\mathrm{3}} =−\mathrm{8} \\ $$$$\mathrm{if}\:\mathrm{r}=\mathrm{2}\:\Rightarrow\mathrm{U}_{\mathrm{1}} =\mathrm{2}\:;\:\mathrm{U}_{\mathrm{2}} =\mathrm{4}\:;\:\mathrm{U}_{\mathrm{3}} =\mathrm{8} \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *