Question Number 136006 by liberty last updated on 17/Mar/21
$$ \\ $$What are the dimensions of the rectangle of maximum area that can be inscribed in the portion of the parabola x^2=8y intercepted by the line y=2?
Answered by mr W last updated on 18/Mar/21
$${A}=\mathrm{2}{p}\left(\mathrm{2}−\frac{{p}^{\mathrm{2}} }{\mathrm{8}}\right) \\ $$$$\frac{{dA}}{{dp}}=\mathrm{4}−\frac{\mathrm{3}{p}^{\mathrm{2}} }{\mathrm{4}}=\mathrm{0} \\ $$$$\Rightarrow{p}=\frac{\mathrm{4}}{\:\sqrt{\mathrm{3}}}=\frac{\mathrm{4}\sqrt{\mathrm{3}}}{\mathrm{3}} \\ $$$${B}=\mathrm{2}{p}=\frac{\mathrm{8}\sqrt{\mathrm{3}}}{\mathrm{3}} \\ $$$${H}=\mathrm{2}−\frac{\mathrm{16}×\mathrm{3}}{\mathrm{8}×\mathrm{9}}=\mathrm{2}−\frac{\mathrm{2}}{\mathrm{3}}=\frac{\mathrm{4}}{\mathrm{3}} \\ $$$${A}_{{max}} =\frac{\mathrm{8}\sqrt{\mathrm{3}}}{\mathrm{3}}×\frac{\mathrm{4}}{\mathrm{3}}=\frac{\mathrm{32}\sqrt{\mathrm{3}}}{\mathrm{9}} \\ $$
Commented by otchereabdullai@gmail.com last updated on 17/Mar/21
$$\mathrm{nice}! \\ $$
Commented by liberty last updated on 17/Mar/21
$${i}\:{got}\:\frac{\mathrm{32}}{\mathrm{3}\sqrt{\mathrm{3}}}\:{sir} \\ $$
Commented by liberty last updated on 18/Mar/21
$${haha}..{your}\:{typo}\:{sir}\:{in}\:\mathrm{2}^{{nd}} \:{line} \\ $$
Commented by mr W last updated on 18/Mar/21
$${yes}.\:{i}\:{have}\:{fixed}. \\ $$
Answered by liberty last updated on 17/Mar/21
$${let}\:{A}\left(−{x},{y}\right)\:{and}\:{B}\left({x},{y}\right)\:{two} \\ $$$${point}\:{at}\:{parabola}\: \\ $$$${the}\:{area}\:{of}\:{rectangle}\:{is}\:{A}=\mathrm{2}{x}\left(\mathrm{2}−{y}\right) \\ $$$${A}\left({x}\right)=\:\mathrm{2}{x}\left(\mathrm{2}−\frac{{x}^{\mathrm{2}} }{\mathrm{8}}\right)=\mathrm{4}{x}−\frac{{x}^{\mathrm{3}} }{\mathrm{4}} \\ $$$${A}\:'\left({x}\right)=\:\mathrm{4}−\frac{\mathrm{3}}{\mathrm{4}}{x}^{\mathrm{2}} =\mathrm{0}\Rightarrow{x}=\frac{\mathrm{4}}{\:\sqrt{\mathrm{3}}} \\ $$$${A}\left({x}\right)_{{max}} =\:\frac{\mathrm{8}}{\:\sqrt{\mathrm{3}}}\:\left(\mathrm{2}−\frac{\mathrm{16}}{\mathrm{24}}\right)=\frac{\mathrm{8}}{\:\sqrt{\mathrm{3}}}\left(\mathrm{2}−\frac{\mathrm{2}}{\mathrm{3}}\right) \\ $$$$=\:\frac{\mathrm{32}}{\mathrm{3}\sqrt{\mathrm{3}}} \\ $$