Menu Close

What-are-the-possible-solution-satisfying-x-y-y-x-




Question Number 7222 by Tawakalitu. last updated on 16/Aug/16
What are the possible solution satisfying  x^y  = y^x
$${What}\:{are}\:{the}\:{possible}\:{solution}\:{satisfying} \\ $$$${x}^{{y}} \:=\:{y}^{{x}} \\ $$
Commented by Tawakalitu. last updated on 17/Aug/16
I appreciate your effort. thanks sir.
$${I}\:{appreciate}\:{your}\:{effort}.\:{thanks}\:{sir}. \\ $$
Commented by Yozzia last updated on 17/Aug/16
x=y∈C constitutes part of the solution  set.  −−−−−−−−−−−−−−−−−−−−−−−  x^y =y^x   ylnx=xlny  −(1/x)lnx=−(1/y)lny  x^(−1) lnx^(−1) =y^(−1) lny^(−1)   e^(lnx^(−1) ) lnx^(−1) =e^(lny^(−1) ) lny^(−1)   W(e^(lnx^(−1) ) lnx^(−1) )=W(e^(lny^(−1) ) lny^(−1) )  ⇒lnx^(−1) =lny^(−1)   ⇒(1/x)=(1/y)⇒x=y∈C.  By this working, x^y =y^x  ⇔x=y.
$${x}={y}\in\mathbb{C}\:{constitutes}\:{part}\:{of}\:{the}\:{solution} \\ $$$${set}. \\ $$$$−−−−−−−−−−−−−−−−−−−−−−− \\ $$$${x}^{{y}} ={y}^{{x}} \\ $$$${ylnx}={xlny} \\ $$$$−\frac{\mathrm{1}}{{x}}{lnx}=−\frac{\mathrm{1}}{{y}}{lny} \\ $$$${x}^{−\mathrm{1}} {lnx}^{−\mathrm{1}} ={y}^{−\mathrm{1}} {lny}^{−\mathrm{1}} \\ $$$${e}^{{lnx}^{−\mathrm{1}} } {lnx}^{−\mathrm{1}} ={e}^{{lny}^{−\mathrm{1}} } {lny}^{−\mathrm{1}} \\ $$$${W}\left({e}^{{lnx}^{−\mathrm{1}} } {lnx}^{−\mathrm{1}} \right)={W}\left({e}^{{lny}^{−\mathrm{1}} } {lny}^{−\mathrm{1}} \right) \\ $$$$\Rightarrow{lnx}^{−\mathrm{1}} ={lny}^{−\mathrm{1}} \\ $$$$\Rightarrow\frac{\mathrm{1}}{{x}}=\frac{\mathrm{1}}{{y}}\Rightarrow{x}={y}\in\mathbb{C}. \\ $$$${By}\:{this}\:{working},\:{x}^{{y}} ={y}^{{x}} \:\Leftrightarrow{x}={y}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *