Question Number 135855 by liberty last updated on 16/Mar/21
$${What}\:{are}\:{the}\:{possible}\:{value}\:{of} \\ $$$$\mathrm{cos}\:\alpha×\mathrm{sin}\:\beta\:\:{if}\:\mathrm{sin}\:\alpha×\mathrm{cos}\:\beta=−\frac{\mathrm{1}}{\mathrm{2}} \\ $$
Answered by EDWIN88 last updated on 16/Mar/21
$$\mathrm{We}\:\mathrm{have}\:−\mathrm{1}\leqslant\mathrm{sin}\:\left(\alpha+\beta\right)\leqslant\mathrm{1}\:\mathrm{and}\:−\mathrm{1}\leqslant\mathrm{sin}\:\left(\alpha−\beta\right)\leqslant\mathrm{1} \\ $$$$\mathrm{now}\:\mathrm{from}\:−\mathrm{1}\leqslant\mathrm{sin}\:\left(\alpha+\beta\right)\leqslant\mathrm{1}\:\mathrm{we}\:\mathrm{get}\: \\ $$$$−\mathrm{1}\leqslant\mathrm{sin}\:\alpha\mathrm{cos}\:\beta+\mathrm{cos}\:\alpha\mathrm{sin}\:\beta\leqslant\mathrm{1} \\ $$$$−\mathrm{1}\leqslant−\frac{\mathrm{1}}{\mathrm{2}}+\mathrm{cos}\:\alpha\mathrm{sin}\:\beta\leqslant\mathrm{1}\:\Rightarrow−\frac{\mathrm{1}}{\mathrm{2}}\leqslant\mathrm{cos}\:\alpha\mathrm{sin}\:\beta\leqslant\frac{\mathrm{3}}{\mathrm{2}}…\left(\mathrm{i}\right) \\ $$$$\mathrm{from}\:−\mathrm{1}\leqslant\mathrm{sin}\:\left(\alpha−\beta\right)\leqslant\mathrm{1}\:\mathrm{we}\:\mathrm{get} \\ $$$$−\mathrm{1}\leqslant\mathrm{sin}\:\alpha\mathrm{cos}\:\beta−\mathrm{cos}\:\alpha\mathrm{sin}\:\beta\leqslant\mathrm{1} \\ $$$$−\mathrm{1}\leqslant−\frac{\mathrm{1}}{\mathrm{2}}−\mathrm{cos}\:\alpha\mathrm{sin}\:\beta\leqslant\mathrm{1} \\ $$$$−\frac{\mathrm{3}}{\mathrm{2}}\leqslant\mathrm{cos}\:\alpha\mathrm{sin}\:\beta\leqslant\frac{\mathrm{1}}{\mathrm{2}}…\left(\mathrm{ii}\right) \\ $$$$\mathrm{combine}\:\mathrm{equation}\:\left(\mathrm{i}\right)\:\mathrm{and}\:\left(\mathrm{ii}\right) \\ $$$$\mathrm{we}\:\mathrm{get}\:\Rightarrow\:−\frac{\mathrm{1}}{\mathrm{2}}\leqslant\mathrm{cos}\:\alpha\mathrm{sin}\:\beta\leqslant\frac{\mathrm{1}}{\mathrm{2}} \\ $$