Menu Close

what-equation-of-ellips-with-F-1-1-2-F-2-3-4-and-a-3-




Question Number 78177 by jagoll last updated on 15/Jan/20
what equation of ellips  with F_1 (1,2) F_2 (3,4) and a = (√3)
whatequationofellipswithF1(1,2)F2(3,4)anda=3
Commented by MJS last updated on 15/Jan/20
what are we “allowed to do”?
whatareweallowedtodo?
Commented by jagoll last updated on 15/Jan/20
yes sir i can′t solve this problem
yessiricantsolvethisproblem
Commented by jagoll last updated on 15/Jan/20
what is center point at (((1+3)/2), ((2+4)/2))= (2,3) sir?
whatiscenterpointat(1+32,2+42)=(2,3)sir?
Commented by jagoll last updated on 15/Jan/20
Commented by MJS last updated on 15/Jan/20
one possibility is to take the definition of  an ellipse as “recipe”  ell={X∈R^2 ∣XF_1 ^(−) +XF_2 ^(−) =2a}  let F_1 = ((p_1 ),(q_1 ) ) ; F_2 = ((p_2 ),(q_2 ) )  ⇒  (√((x−p_1 )^2 +(y−q_1 )^2 ))+(√((x−p_2 )^2 +(y−q_2 )^2 ))=2a  (√α)+(√β)=2a                   ∣^2 −(α+β)  2(√α)(√β)=4a^2 −α+β     ∣^2   4αβ=16a^4 −8a^2 (α+β)+(α+β)^2   16a^4 −8a^2 (α+β)+(α−β)^2 =0  ...  Ax^2 +Bxy+Cy^2 +Dx+Ey+F=0    A=4(2a+p_1 −p_2 )(2a−p_1 +p_2 )  B=8(p_1 −q_2 )(p_2 −q_1 )  C=4(2a+q_1 −q_2 )(2a−q_1 +q_2 )  D=4((p_1 −p_2 )(p_1 ^2 +q_1 ^2 −p_2 ^2 −q_2 ^2 )−4a^2 (p_1 +p_2 ))  E=4((q_1 −q_2 )((p_1 ^2 +q_1 ^2 −p_2 ^2 −q_2 ^2 )−4a^2 (q_1 +q_2 ))  F=−16a^4 +8a^2 (p_1 ^2 +q_1 ^2 +p_2 ^2 +q_2 ^2 )−(p_1 ^2 +q_1 ^2 −p_2 ^2 −q_2 ^2 )^2     in our case  a=(√3); p_1 =1; q_1 =2; p_2 =3; q_2 =4  A=32; B=−32; C=32; D=−32; E=−128; F=176p  ⇒  32x^2 −32xy+32y^2 −32x−128y+176=0  x^2 −xy+y^2 −x−4y+((11)/2)=0
onepossibilityistotakethedefinitionofanellipseasrecipeell={XR2XF1+XF2=2a}letF1=(p1q1);F2=(p2q2)(xp1)2+(yq1)2+(xp2)2+(yq2)2=2aα+β=2a2(α+β)2αβ=4a2α+β24αβ=16a48a2(α+β)+(α+β)216a48a2(α+β)+(αβ)2=0Ax2+Bxy+Cy2+Dx+Ey+F=0A=4(2a+p1p2)(2ap1+p2)B=8(p1q2)(p2q1)C=4(2a+q1q2)(2aq1+q2)D=4((p1p2)(p12+q12p22q22)4a2(p1+p2))E=4((q1q2)((p12+q12p22q22)4a2(q1+q2))F=16a4+8a2(p12+q12+p22+q22)(p12+q12p22q22)2inourcasea=3;p1=1;q1=2;p2=3;q2=4A=32;B=32;C=32;D=32;E=128;F=176p32x232xy+32y232x128y+176=0x2xy+y2x4y+112=0
Commented by MJS last updated on 15/Jan/20
...you are right with the center point
youarerightwiththecenterpoint
Commented by MJS last updated on 15/Jan/20
the other possibility is to calculate b  e=(1/2)F_1 F_2 ^(−) =(√2)  b=(√(a^2 −e^2 ))=1  the equation of the ellipse similar to the  given one but with center in  ((0),(0) ) and axes  parallel to x− and y−axes is  (x^2 /3)+(y^2 /1)=1  x^2 +3y^2 −3=0  now we have to rotate and shift it  θ=∡(F_1 F_2 ^(→) )=45°  ⇒  { ((x^∗ =((√2)/2)(x−y))),((y^∗ =((√2)/2)(x+y))) :} ⇔  { ((x=((√2)/2)(x^∗ +y^∗ ))),((y=((√2)/2)(y^∗ −x^∗ ))) :}  inserting into our equation  2(x^∗ )^2 −2x^∗ y^∗ +2(y^∗ )^2 −3=0  shifting the center   { ((x^∗ =x−2)),((y^∗ =y−3)) :}  2x^2 −2xy+2y^2 −2x−8y+11=0  x^2 −xy+y^2 −x−4y+((11)/2)=0
theotherpossibilityistocalculatebe=12F1F2=2b=a2e2=1theequationoftheellipsesimilartothegivenonebutwithcenterin(00)andaxesparalleltoxandyaxesisx23+y21=1x2+3y23=0nowwehavetorotateandshiftitθ=(F1F2)=45°{x=22(xy)y=22(x+y){x=22(x+y)y=22(yx)insertingintoourequation2(x)22xy+2(y)23=0shiftingthecenter{x=x2y=y32x22xy+2y22x8y+11=0x2xy+y2x4y+112=0
Commented by jagoll last updated on 15/Jan/20
sir why center point at (0,0) ?  and i got the angle α = tan^(−1) (2). where  i′m wrong sir?
sirwhycenterpointat(0,0)?andigottheangleα=tan1(2).whereimwrongsir?
Commented by MJS last updated on 15/Jan/20
I rotate first, then shift  you shift first, then rotate  this makes no difference  the angle is the same as the angle of the vector  F_1 F_2 ^(→) = ((2),(2) ) ; tan α =(y/x)=1
Irotatefirst,thenshiftyoushiftfirst,thenrotatethismakesnodifferencetheangleisthesameastheangleofthevectorF1F2=(22);tanα=yx=1
Commented by jagoll last updated on 15/Jan/20
yes sir. thanks
yessir.thanks
Answered by jagoll last updated on 15/Jan/20
2c=(√(2^2 +2^2  )) ⇒ c = (√2)  b^2  = a^2 −c^2  = 3−2=1  ellips equation originally?  (((x−2)^2 )/3)+(((y−3)^2 )/1)=1  this is ellipse by rotated with  angle α = tan^(−1) (2)?
2c=22+22c=2b2=a2c2=32=1ellipsequationoriginally?(x2)23+(y3)21=1thisisellipsebyrotatedwithangleα=tan1(2)?
Commented by MJS last updated on 15/Jan/20
angle α=tan^(−1)  (1) =45°
angleα=tan1(1)=45°
Commented by MJS last updated on 15/Jan/20
...you should get the same result as me. you  shift first, then rotate
youshouldgetthesameresultasme.youshiftfirst,thenrotate
Commented by jagoll last updated on 15/Jan/20
oo tan α =((4−2)/(3−1))=1 . oo i understand   sir. thanks you very much
ootanα=4231=1.ooiunderstandsir.thanksyouverymuch

Leave a Reply

Your email address will not be published. Required fields are marked *