Question Number 2367 by Filup last updated on 18/Nov/15
$$\mathrm{What}\:\mathrm{exactly}\:\mathrm{does}\:{f}:\mathbb{C}\rightarrow\mathbb{C}\:\mathrm{mean}? \\ $$
Answered by RasheedAhmad last updated on 18/Nov/15
$${A}\:{function}\:\:{f}\:\:{whose}\:{domain}\:{and} \\ $$$${range}\:{both}\:{are}\:\mathbb{C}\:\left({set}\:{of}\:{complex}\right. \\ $$$$\left.{numbers}\right) \\ $$
Commented by Filup last updated on 18/Nov/15
$$\mathrm{Oh},\:\mathrm{I}\:\mathrm{see}!\:\mathrm{What}\:\mathrm{other}\:\mathrm{variations}\:\mathrm{are}\:\mathrm{there}? \\ $$$$\mathrm{Could}\:\mathrm{I}\:\mathrm{have}\:\mathrm{some}\:\mathrm{examples}? \\ $$
Commented by RasheedAhmad last updated on 18/Nov/15
$${Take}\:{an}\:{example}.\:{If}\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{g}\left({x}\right)=\frac{\mathrm{1}}{{x}} \\ $$$${If}\:{x}\in\mathbb{N}\:{i}−{e}\:{domain}\:{of}\:{g}\left({x}\right)\:{then} \\ $$$${g}\left({x}\right)\in\left(\mathrm{0},\mathrm{1}\right]\:{i}−{e}\:{the}\:{range}\:{of}\:{g}\left({x}\right) \\ $$$${We}\:{can}\:{write} \\ $$$${g}:\mathbb{N}\rightarrow\left(\mathrm{0},\mathrm{1}\right] \\ $$$${Mr}.\:{prakash}\:{jain},\mathrm{123456},\:{Mr}.\:{Yozzi} \\ $$$${and}\:{some}\:{others}\:{can}\:{give}\:{more} \\ $$$${satisfying}\:{answer}. \\ $$
Commented by 123456 last updated on 18/Nov/15
$${g}\left({z}\right)=\frac{\mathrm{1}}{{z}} \\ $$$$\mathrm{all}\:\mathrm{complex}\:\mathrm{number}\:\mathrm{except}\:\mathrm{0}\:\mathrm{can}\:\mathrm{be}\:\mathrm{pruged} \\ $$$$\mathrm{then}\:\mathrm{the}\:\mathrm{domain}\:\mathrm{is}\:\mathbb{C}/\left\{\mathrm{0}\right\} \\ $$$$\mathrm{the}\:\mathrm{range}\:\mathrm{is}\:\mathrm{all}\:\mathrm{complex}\:\mathrm{except}\:\mathrm{0},\:\mathrm{since} \\ $$$$\mathrm{1}/{z}\rightarrow\mathrm{0},{z}\rightarrow\overset{\sim} {\infty}\:\left(\mathrm{complex}\:\mathrm{infinity}\right) \\ $$$$\mathrm{then}\:\mathrm{it}\:\mathrm{can}\:\mathrm{be}\:\mathrm{give}\:\mathrm{by} \\ $$$${g}:\mathbb{C}/\left\{\mathrm{0}\right\}\rightarrow\mathbb{C}/\left\{\mathrm{0}\right\}\:\mathrm{simple}\:\mathrm{pole}\:\mathrm{at}\:{z}=\mathrm{0} \\ $$$$\mathrm{if}\:\mathrm{we}\:\mathrm{take} \\ $$$${h}\left({z}\right)=\begin{cases}{{g}\left({z}\right)}&{{z}\neq\mathrm{0}}\\{\mathrm{0}}&{{z}=\mathrm{0}}\end{cases}\:\left(\mathrm{removing}\:\mathrm{problem}\:\mathrm{at}\:{z}=\mathrm{0}\right) \\ $$$${h}:\mathbb{C}\rightarrow\mathbb{C} \\ $$$$\mathrm{in}\:\mathrm{general}\:\mathrm{you}\:\mathrm{can}\:\mathrm{take} \\ $$$${g}:\mathrm{A}\rightarrow\mathrm{B}\:\mathrm{where}\:\mathrm{A}\subset\mathbb{C}/\left\{\mathrm{0}\right\}\:\mathrm{is}\:\mathrm{a}\:\mathrm{subset}\:\mathrm{of} \\ $$$$\mathrm{the}\:\mathrm{complex}\:\mathrm{excluding}\:\mathrm{0}\:\left(\mathrm{maximal}\:\mathrm{domain}\right. \\ $$$$\left.\mathrm{possible}\right)\:\mathrm{and}\:\mathrm{B}\subset\mathbb{C}\:\mathrm{is}\:\mathrm{a}\:\mathrm{subset}\:\mathrm{that} \\ $$$$\mathrm{depends}\:\mathrm{on}\:\mathrm{A} \\ $$
Commented by Yozzi last updated on 18/Nov/15