Menu Close

What-is-1-3-1-x-4-dx-equal-to-a-232-5-b-116-5-c-116-5-d-232-5-




Question Number 12303 by Gaurav3651 last updated on 18/Apr/17
What is∫_1 ^3 ∣1−x^4  ∣dx equal to?  (a)  −232/5  (b)  −116/5  (c)   116/5  (d)   232/5
Whatis311x4dxequalto?(a)232/5(b)116/5(c)116/5(d)232/5
Answered by ajfour last updated on 18/Apr/17
 = ∫_(   1) ^3 (x^4 −1)dx =[(x^5 /5)−x]_(  1) ^( 3)      =((3^5 /5)−3)−((1/5)−1)     =((243)/5)−(1/5)−3+1     = ((242)/5) − 2 = ((232)/5) .  (d) .
Missing \left or extra \right=(3553)(151)=2435153+1=24252=2325.(d).
Commented by prakash jain last updated on 22/Apr/17
For module problem you need  to approach in the following way  ∣f(x)∣ find range of x for which f(x)≥0  ∣f(x)∣ find range of x for which f(x)<0  Split the definite integral in parts  where f(x)≥0 and where f(x)<0  replace ∣f(x)∣ by f(x) or −f(x)  For example  ∫_0 ^3 ∣1−x^2 ∣ dx  ∣1−x^2 ∣≥0 for x∈[0,1]  ∣1−x^2 ∣<0 for x∈(1,3]  ∫_0 ^3 ∣1−x^2 ∣ dx=∫_0 ^1 (1−x^2 )dx+∫_1 ^2 −(1−x^2 )dx
Formoduleproblemyouneedtoapproachinthefollowingwayf(x)findrangeofxforwhichf(x)0f(x)findrangeofxforwhichf(x)<0Splitthedefiniteintegralinpartswheref(x)0andwheref(x)<0replacef(x)byf(x)orf(x)Forexample031x2dx1x2∣⩾0forx[0,1]1x2∣<0forx(1,3]031x2dx=01(1x2)dx+12(1x2)dx
Commented by Gaurav3651 last updated on 19/Apr/17
   shouldn′t we proceed in different  way to solve modulus problems  otherwise it is similar to  ∫_(   1) ^3 (x^4 −1)dx
shouldntweproceedindifferentwaytosolvemodulusproblemsotherwiseitissimilarto31(x41)dx

Leave a Reply

Your email address will not be published. Required fields are marked *