Menu Close

What-is-a-solid-angle-How-is-it-defined-Does-the-corner-of-a-cubic-room-can-be-said-right-solid-angle-




Question Number 3709 by Rasheed Soomro last updated on 19/Dec/15
What is a solid angle?  How is it defined?  Does the corner of a  cubic room can be said  ′ right solid angle ′ ?
$$\mathcal{W}{hat}\:{is}\:{a}\:{solid}\:{angle}? \\ $$$$\mathcal{H}{ow}\:{is}\:{it}\:{defined}? \\ $$$${Does}\:{the}\:{corner}\:{of}\:{a} \\ $$$${cubic}\:{room}\:{can}\:{be}\:{said} \\ $$$$'\:{right}\:{solid}\:{angle}\:'\:? \\ $$
Answered by 123456 last updated on 20/Dec/15
a angle (radians) is the measure of arc  divided by his radius  θ=(l^⌢ /r)  the solid angle is similiar to this, but  instead of lenght it take the surface of  it  ℧=(S/r^2 )  the full solid angle of a sphere is 4π  (steroradians, if im not wrong)
$$\mathrm{a}\:\mathrm{angle}\:\left(\mathrm{radians}\right)\:\mathrm{is}\:\mathrm{the}\:\mathrm{measure}\:\mathrm{of}\:\mathrm{arc} \\ $$$$\mathrm{divided}\:\mathrm{by}\:\mathrm{his}\:\mathrm{radius} \\ $$$$\theta=\frac{\overset{\frown} {{l}}}{{r}} \\ $$$$\mathrm{the}\:\mathrm{solid}\:\mathrm{angle}\:\mathrm{is}\:\mathrm{similiar}\:\mathrm{to}\:\mathrm{this},\:\mathrm{but} \\ $$$$\mathrm{instead}\:\mathrm{of}\:\mathrm{lenght}\:\mathrm{it}\:\mathrm{take}\:\mathrm{the}\:\mathrm{surface}\:\mathrm{of} \\ $$$$\mathrm{it} \\ $$$$\mho=\frac{{S}}{{r}^{\mathrm{2}} } \\ $$$$\mathrm{the}\:\mathrm{full}\:\mathrm{solid}\:\mathrm{angle}\:\mathrm{of}\:\mathrm{a}\:\mathrm{sphere}\:\mathrm{is}\:\mathrm{4}\pi \\ $$$$\left(\mathrm{steroradians},\:\mathrm{if}\:\mathrm{im}\:\mathrm{not}\:\mathrm{wrong}\right) \\ $$
Commented by Rasheed Soomro last updated on 20/Dec/15
Thanks!  Is S area of surface?  What shape of surface S is taken?
$$\mathcal{T}{hanks}! \\ $$$${Is}\:{S}\:{area}\:{of}\:{surface}? \\ $$$$\mathcal{W}{hat}\:{shape}\:{of}\:{surface}\:{S}\:{is}\:{taken}? \\ $$
Commented by 123456 last updated on 20/Dec/15
spherical :v
$$\mathrm{spherical}\::\mathrm{v} \\ $$
Commented by Rasheed Soomro last updated on 20/Dec/15
What is definition of steroradians?  Of course S is  a portion of spherical  surface. What is the shape of the portion?
$$\mathcal{W}{hat}\:{is}\:{definition}\:{of}\:\mathrm{steroradians}? \\ $$$$\mathcal{O}{f}\:{course}\:{S}\:{is}\:\:{a}\:{portion}\:{of}\:{spherical} \\ $$$${surface}.\:{What}\:{is}\:{the}\:{shape}\:{of}\:{the}\:{portion}? \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *