Menu Close

what-is-larger-99-100-or-100-99-




Question Number 137473 by mr W last updated on 03/Apr/21
what is larger? 99^(100)  or 100^(99) ?
$${what}\:{is}\:{larger}?\:\mathrm{99}^{\mathrm{100}} \:{or}\:\mathrm{100}^{\mathrm{99}} ? \\ $$
Answered by MJS_new last updated on 03/Apr/21
n^(n+1) >(n+1)^n  ∀ n≥3
$${n}^{{n}+\mathrm{1}} >\left({n}+\mathrm{1}\right)^{{n}} \:\forall\:{n}\geqslant\mathrm{3} \\ $$
Commented by mr W last updated on 03/Apr/21
yes sir.
$${yes}\:{sir}. \\ $$
Answered by mr W last updated on 03/Apr/21
f(x)=x^(1/x) =e^((ln x)/x)   f′(x)=x^(1/x) ((1/x^2 )−((ln x)/x^2 ))=(1−ln x)x^((1/x)−2)   for x<e: f′(x)>0 ⇒f(x) is strictly increasing  for x>e: f′(x)<0 ⇒f(x) is strictly decreasing  that means for 3≤m<n:  m^(1/m) >n^(1/n)   ⇒(m^(1/m) )^(mn) >(n^(1/n) )^(mn)   ⇒m^n >n^m   so 99^(100) >100^(99)
$${f}\left({x}\right)={x}^{\frac{\mathrm{1}}{{x}}} ={e}^{\frac{\mathrm{ln}\:{x}}{{x}}} \\ $$$${f}'\left({x}\right)={x}^{\frac{\mathrm{1}}{{x}}} \left(\frac{\mathrm{1}}{{x}^{\mathrm{2}} }−\frac{\mathrm{ln}\:{x}}{{x}^{\mathrm{2}} }\right)=\left(\mathrm{1}−\mathrm{ln}\:{x}\right){x}^{\frac{\mathrm{1}}{{x}}−\mathrm{2}} \\ $$$${for}\:{x}<{e}:\:{f}'\left({x}\right)>\mathrm{0}\:\Rightarrow{f}\left({x}\right)\:{is}\:{strictly}\:{increasing} \\ $$$${for}\:{x}>{e}:\:{f}'\left({x}\right)<\mathrm{0}\:\Rightarrow{f}\left({x}\right)\:{is}\:{strictly}\:{decreasing} \\ $$$${that}\:{means}\:{for}\:\mathrm{3}\leqslant{m}<{n}: \\ $$$${m}^{\frac{\mathrm{1}}{{m}}} >{n}^{\frac{\mathrm{1}}{{n}}} \\ $$$$\Rightarrow\left({m}^{\frac{\mathrm{1}}{{m}}} \right)^{{mn}} >\left({n}^{\frac{\mathrm{1}}{{n}}} \right)^{{mn}} \\ $$$$\Rightarrow{m}^{{n}} >{n}^{{m}} \\ $$$${so}\:\mathrm{99}^{\mathrm{100}} >\mathrm{100}^{\mathrm{99}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *