Question Number 77574 by jagoll last updated on 08/Jan/20
$${what}\:{is}\:{maximum}\: \\ $$$${value}\:{of}\:{y}=\:\left(\mathrm{3}{x}+\mathrm{4}\right)^{\mathrm{2}} ×\mathrm{sin}\:\left(\mathrm{2}{x}\right) \\ $$
Commented by MJS last updated on 08/Jan/20
$$\mathrm{sin}\:\mathrm{2}{x}\:=−\mathrm{1}\:\Rightarrow\:{x}={n}\pi−\frac{\pi}{\mathrm{4}}=\frac{\mathrm{4}{n}−\mathrm{1}}{\mathrm{4}}\pi \\ $$$$\mathrm{sin}\:\mathrm{2}{x}\:=+\mathrm{1}\:\Rightarrow\:{x}={n}\pi+\frac{\pi}{\mathrm{4}}=\frac{\mathrm{4}{n}+\mathrm{1}}{\mathrm{4}}\pi \\ $$$${n}\in\mathbb{Z} \\ $$$$ \\ $$$${f}\left({x}\right)=\left(\mathrm{3}{x}+\mathrm{4}\right)^{\mathrm{2}} \mathrm{sin}\:\mathrm{2}{x} \\ $$$${f}\left(\frac{\mathrm{4}{n}−\mathrm{1}}{\mathrm{4}}\pi\right)=−\frac{\left(\mathrm{12}\pi{n}−\mathrm{3}\pi+\mathrm{16}\right)^{\mathrm{2}} }{\mathrm{16}} \\ $$$${n}=\pm\mathrm{10}^{\mathrm{3}} \:\Rightarrow\:{f}\left({x}\right)\approx−\mathrm{8}.\mathrm{9}×\mathrm{10}^{\mathrm{7}} \\ $$$${n}=\pm\mathrm{10}^{\mathrm{6}} \:\Rightarrow\:{f}\left({x}\right)\approx−\mathrm{8}.\mathrm{9}×\mathrm{10}^{\mathrm{13}} \\ $$$${n}=\pm\mathrm{10}^{\mathrm{9}} \:\Rightarrow\:{f}\left({x}\right)\approx−\mathrm{8}.\mathrm{9}×\mathrm{10}^{\mathrm{19}} \\ $$$$… \\ $$
Commented by jagoll last updated on 08/Jan/20
$${please}\: \\ $$
Commented by MJS last updated on 08/Jan/20
$$\mathrm{no}\:\mathrm{maximum}\:\mathrm{because}\:\underset{{x}\rightarrow\pm\infty} {\mathrm{lim}}\:\left(\mathrm{3}{x}+\mathrm{4}\right)^{\mathrm{2}} \:=+\infty \\ $$
Commented by jagoll last updated on 08/Jan/20
$${if}\:{minimum}\:{sir}? \\ $$
Commented by MJS last updated on 08/Jan/20
$$\mathrm{also}\:\mathrm{no}\:\mathrm{minimum} \\ $$$$−\mathrm{1}\leqslant\mathrm{sin}\:\mathrm{2}{x}\:\leqslant\mathrm{1} \\ $$$$−\infty<\left(\mathrm{3}{x}+\mathrm{4}\right)^{\mathrm{2}} \mathrm{sin}\:\mathrm{2}{x}<+\infty \\ $$
Commented by jagoll last updated on 08/Jan/20
$${thanks}\:{you}\:{sir} \\ $$
Commented by jagoll last updated on 08/Jan/20
$${sir}\:{minimum}\:\left(\mathrm{3}{x}+\mathrm{4}\right)^{\mathrm{2}} \:=\:\mathrm{0}\: \\ $$$${why}\:{minimum}\:\left(\mathrm{3}{x}+\mathrm{4}\right)^{\mathrm{2}} ×\mathrm{sin}\:\left(\mathrm{2}{x}\right)\:=\:−\infty \\ $$
Commented by MJS last updated on 08/Jan/20
$$…\mathrm{similar}\:\mathrm{for} \\ $$$${f}\left(\frac{\mathrm{4}{n}+\mathrm{1}}{\mathrm{4}}\pi\right)=\frac{\left(\mathrm{12}\pi{n}+\mathrm{3}\pi+\mathrm{16}\right)^{\mathrm{2}} }{\mathrm{16}} \\ $$
Commented by jagoll last updated on 08/Jan/20
$${thanks}\:{you}\:{sir} \\ $$