Question Number 134772 by bramlexs22 last updated on 07/Mar/21
$$ \\ $$What is the equation of a circle that goes through points (0,1), (1,4), and (5,2)?
Commented by bramlexs22 last updated on 07/Mar/21
$$\mathrm{thank}\:\mathrm{you}\:\mathrm{all}\:\mathrm{sir}\:\mathrm{and}\:\mathrm{master} \\ $$
Answered by EDWIN88 last updated on 07/Mar/21
$$\mathrm{The}\:\mathrm{perpendicular}\:\mathrm{bisector}\:\mathrm{of}\:\mathrm{any}\:\mathrm{chord}\: \\ $$$$\mathrm{of}\:\mathrm{a}\:\mathrm{circle}\:\mathrm{is}\:\mathrm{a}\:\mathrm{diameter}\:\mathrm{and}\:\mathrm{thus}\:\mathrm{goes}\:\mathrm{through} \\ $$$$\mathrm{the}\:\mathrm{center}\:\mathrm{of}\:\mathrm{said}\:\mathrm{circle}\: \\ $$$$\mathrm{Midpoint}\:\mathrm{of}\:\begin{cases}{\mathrm{P}_{\mathrm{1}} \left(\mathrm{0},\mathrm{1}\right)}\\{\mathrm{P}_{\mathrm{2}} \left(\mathrm{1},\mathrm{4}\right)}\end{cases}\:\mathrm{is}\:\mathrm{S}\left(\frac{\mathrm{1}}{\mathrm{2}},\frac{\mathrm{5}}{\mathrm{2}}\right) \\ $$$$\mathrm{and}\:\mathrm{the}\:\mathrm{slope}\:\mathrm{is}\:\mathrm{m}\:=\:\frac{\mathrm{4}−\mathrm{1}}{\mathrm{1}−\mathrm{0}}\:=\:\mathrm{3},\:\mathrm{the}\:\mathrm{perpendicular} \\ $$$$\mathrm{slope}\:\mathrm{is}\:{m}_{{p}} \:=−\frac{\mathrm{1}}{\mathrm{3}}.\:\mathrm{the}\:\mathrm{line}\:\mathrm{equation}\: \\ $$$$\Rightarrow\mathrm{y}=−\frac{\mathrm{1}}{\mathrm{3}}\left(\mathrm{x}−\frac{\mathrm{1}}{\mathrm{2}}\right)+\frac{\mathrm{5}}{\mathrm{2}} \\ $$$$\Rightarrow\mathrm{y}=−\frac{\mathrm{1}}{\mathrm{3}}\mathrm{x}+\frac{\mathrm{8}}{\mathrm{3}} \\ $$$$\mathrm{Midpoint}\:\mathrm{of}\:\begin{cases}{\mathrm{P}_{\mathrm{2}} \left(\mathrm{1},\mathrm{4}\right)}\\{\mathrm{P}_{\mathrm{3}} \left(\mathrm{5},\mathrm{2}\right)}\end{cases}\mathrm{is}\:\mathrm{Q}\left(\mathrm{3},\mathrm{3}\right) \\ $$$$\mathrm{and}\:\mathrm{the}\:\mathrm{slope}\:\mathrm{is}\:\mathrm{m}_{\mathrm{2}} =\frac{\mathrm{4}−\mathrm{2}}{\mathrm{1}−\mathrm{5}}=−\frac{\mathrm{1}}{\mathrm{2}},\mathrm{the}\:\mathrm{perpendicular} \\ $$$$\mathrm{slope}\:\mathrm{is}\:{m}_{{p}_{\mathrm{2}} } =\:\mathrm{2}\:,\:\mathrm{the}\:\mathrm{line}\:\mathrm{equation}\: \\ $$$$\Rightarrow\mathrm{y}=\mathrm{2}\left(\mathrm{x}−\mathrm{3}\right)+\mathrm{3}\:;\:\mathrm{y}\:=\:\mathrm{2x}−\mathrm{3} \\ $$$$\mathrm{set}\:\mathrm{the}\:\mathrm{two}\:\mathrm{equation}\:\mathrm{to}\:\mathrm{find}\:\mathrm{x}\:\mathrm{and}\:\mathrm{y},\:\mathrm{after} \\ $$$$\mathrm{solving}\:\mathrm{we}\:\mathrm{get}\:\begin{cases}{\mathrm{x}=\:\frac{\mathrm{17}}{\mathrm{7}}}\\{\mathrm{y}=\frac{\mathrm{13}}{\mathrm{7}}}\end{cases}\:,\:\mathrm{so}\:\mathrm{the}\:\mathrm{center} \\ $$$$\mathrm{point}\:\mathrm{is}\:\left(\frac{\mathrm{17}}{\mathrm{7}},\frac{\mathrm{13}}{\mathrm{7}}\right)\:\mathrm{with}\:\mathrm{radius}\:=\sqrt{\left(\mathrm{0}−\frac{\mathrm{17}}{\mathrm{7}}\right)^{\mathrm{2}} +\left(\mathrm{1}−\frac{\mathrm{13}}{\mathrm{7}}\right)^{\mathrm{2}} } \\ $$$$\mathrm{r}\:=\sqrt{\frac{\mathrm{289}+\mathrm{36}}{\mathrm{49}}}\:=\:\sqrt{\frac{\mathrm{325}}{\mathrm{49}}} \\ $$$$\mathrm{Therefore}\:\mathrm{the}\:\mathrm{circle}'\mathrm{s}\:\mathrm{equation}\:\mathrm{is}\: \\ $$$$\underline{\left(\mathrm{x}−\frac{\mathrm{17}}{\mathrm{7}}\right)^{\mathrm{2}} +\left(\mathrm{y}−\frac{\mathrm{13}}{\mathrm{7}}\right)^{\mathrm{2}} =\:\frac{\mathrm{325}}{\mathrm{49}}}\: \\ $$$$ \\ $$
Commented by bramlexs22 last updated on 07/Mar/21
Commented by bramlexs22 last updated on 07/Mar/21
$$\mathrm{nice}…. \\ $$
Commented by greg_ed last updated on 07/Mar/21
$$\boldsymbol{\mathrm{well}}\:\boldsymbol{\mathrm{done}},\:\boldsymbol{\mathrm{sir}}\:\boldsymbol{\mathrm{EDWIN}}\mathrm{88}\:! \\ $$
Answered by john_santu last updated on 07/Mar/21
$${Let}\:{C}\left({x},{y}\right)\:{be}\:{a}\:{center}\:{point}\:{the}\:{circle} \\ $$$${we}\:{get}\:{the}\:{equation}\: \\ $$$$\left({i}\right)\:\sqrt{{x}^{\mathrm{2}} +\left({y}−\mathrm{1}\right)^{\mathrm{2}} }\:=\:\sqrt{\left({x}−\mathrm{1}\right)^{\mathrm{2}} +\left({y}−\mathrm{4}\right)^{\mathrm{2}} } \\ $$$$\left({ii}\right)\sqrt{{x}^{\mathrm{2}} +\left({y}−\mathrm{1}\right)^{\mathrm{2}} }\:=\sqrt{\left({x}−\mathrm{5}\right)^{\mathrm{2}} +\left({y}−\mathrm{2}\right)^{\mathrm{2}} } \\ $$$$\left({i}\right)\rightarrow{x}^{\mathrm{2}} +{y}^{\mathrm{2}} −\mathrm{2}{y}+\mathrm{1}={x}^{\mathrm{2}} −\mathrm{2}{x}+\mathrm{1}+{y}^{\mathrm{2}} −\mathrm{8}{y}+\mathrm{16} \\ $$$$\Rightarrow\mathrm{2}{x}+\mathrm{6}{y}=\mathrm{16}\:;\:{x}+\mathrm{3}{y}=\mathrm{8}\: \\ $$$$\left({ii}\right)\rightarrow{x}^{\mathrm{2}} +{y}^{\mathrm{2}} −\mathrm{2}{y}+\mathrm{1}={x}^{\mathrm{2}} −\mathrm{10}{x}+\mathrm{25}+{y}^{\mathrm{2}} −\mathrm{4}{y}+\mathrm{4} \\ $$$$\Rightarrow\mathrm{10}{x}+\mathrm{2}{y}=\mathrm{28}\:;\:\mathrm{5}{x}+{y}=\mathrm{14} \\ $$$${solve}\:{for}\:{two}\:{equation}\: \\ $$$$\Rightarrow{x}+\mathrm{3}\left(\mathrm{14}−\mathrm{5}{x}\right)=\:\mathrm{8} \\ $$$$\Rightarrow\mathrm{42}−\mathrm{14}{x}\:=\:\mathrm{8}\:;\:{x}=\frac{\mathrm{34}}{\mathrm{14}}\:=\:\frac{\mathrm{17}}{\mathrm{7}} \\ $$$${and}\:{y}\:=\:\mathrm{14}−\frac{\mathrm{85}}{\mathrm{7}}\:=\:\frac{\mathrm{13}}{\mathrm{7}} \\ $$$${then}\:{we}\:{find}\:{radius}\:=\sqrt{\left(\frac{\mathrm{17}}{\mathrm{7}}−\mathrm{0}\right)^{\mathrm{2}} +\left(\frac{\mathrm{13}}{\mathrm{7}}−\mathrm{1}\right)^{\mathrm{2}} } \\ $$$${radius}\:=\sqrt{\frac{\mathrm{289}+\mathrm{36}}{\mathrm{49}}}\:=\:\sqrt{\frac{\mathrm{325}}{\mathrm{49}}} \\ $$$$\therefore\:\left({x}−\frac{\mathrm{17}}{\mathrm{7}}\right)^{\mathrm{2}} +\left({y}−\frac{\mathrm{13}}{\mathrm{7}}\right)^{\mathrm{2}} =\frac{\mathrm{325}}{\mathrm{49}} \\ $$
Answered by mr W last updated on 07/Mar/21
$${say}\:{the}\:{eqn}.\:{of}\:{circle}\:{is} \\ $$$$\left({x}−{h}\right)^{\mathrm{2}} +\left({y}−{k}\right)^{\mathrm{2}} ={r}^{\mathrm{2}} \\ $$$$ \\ $$$$\left(\mathrm{0}−{h}\right)^{\mathrm{2}} +\left(\mathrm{1}−{k}\right)^{\mathrm{2}} ={r}^{\mathrm{2}} \:\:\:…\left({i}\right) \\ $$$$\left(\mathrm{1}−{h}\right)^{\mathrm{2}} +\left(\mathrm{4}−{k}\right)^{\mathrm{2}} ={r}^{\mathrm{2}} \:\:\:…\left({ii}\right) \\ $$$$\left(\mathrm{5}−{h}\right)^{\mathrm{2}} +\left(\mathrm{2}−{k}\right)^{\mathrm{2}} ={r}^{\mathrm{2}} \:\:\:…\left({iii}\right) \\ $$$$\left({ii}\right)−\left({i}\right): \\ $$$$\left(\mathrm{1}−\mathrm{2}{h}\right)\left(\mathrm{1}\right)+\left(\mathrm{5}−\mathrm{2}{k}\right)\left(\mathrm{3}\right)=\mathrm{0} \\ $$$$\Rightarrow{h}+\mathrm{3}{k}=\mathrm{8}\:\:\:…\left({I}\right) \\ $$$$\left({iii}\right)−\left({i}\right): \\ $$$$\left(\mathrm{5}−\mathrm{2}{h}\right)\left(\mathrm{5}\right)+\left(\mathrm{3}−\mathrm{2}{k}\right)\left(\mathrm{1}\right)=\mathrm{0} \\ $$$$\Rightarrow\mathrm{5}{h}+{k}=\mathrm{14}\:\:\:…\left({II}\right) \\ $$$${from}\:\left({I}\right)\:{and}\:\left({II}\right): \\ $$$$\Rightarrow{k}=\frac{\mathrm{13}}{\mathrm{7}} \\ $$$$\Rightarrow{h}=\frac{\mathrm{17}}{\mathrm{7}} \\ $$$${from}\:\left({i}\right): \\ $$$$\Rightarrow{r}^{\mathrm{2}} =\left(\frac{\mathrm{17}}{\mathrm{7}}\right)^{\mathrm{2}} +\left(\mathrm{1}−\frac{\mathrm{13}}{\mathrm{7}}\right)^{\mathrm{2}} =\frac{\mathrm{325}}{\mathrm{49}} \\ $$$${eqn}.\:{of}\:{circle}: \\ $$$$\left({x}−\frac{\mathrm{17}}{\mathrm{7}}\right)^{\mathrm{2}} +\left({y}−\frac{\mathrm{13}}{\mathrm{7}}\right)^{\mathrm{2}} =\frac{\mathrm{325}}{\mathrm{49}} \\ $$
Commented by mr W last updated on 07/Mar/21
Commented by bramlexs22 last updated on 07/Mar/21
$$\mathrm{how}\:\mathrm{do}\:\mathrm{you}\:\mathrm{sir}\:\mathrm{make}\:\mathrm{a}\:\mathrm{point}\:\mathrm{in}\:\mathrm{your} \\ $$$$\mathrm{graph}? \\ $$
Commented by mr W last updated on 07/Mar/21
$${you}\:{just}\:{make}\:{an}\:{other}\:{smaller}\:{circle},\: \\ $$$${for}\:{example}\:{with}\:{a}\:{radius}\:{of}\:\mathrm{0}.\mathrm{01}. \\ $$$${the}\:{circle}\:{is} \\ $$$$\left({x}−\mathrm{17}/\mathrm{7}\right)^{\mathrm{2}} +\left({y}−\mathrm{13}/\mathrm{7}\right)^{\mathrm{2}} =\mathrm{325}/\mathrm{49} \\ $$$${the}\:{point}\:{is} \\ $$$$\left({x}−\mathrm{17}/\mathrm{7}\right)^{\mathrm{2}} +\left({y}−\mathrm{13}/\mathrm{7}\right)^{\mathrm{2}} <=\mathrm{0}.\mathrm{01} \\ $$
Commented by mr W last updated on 07/Mar/21
Commented by bramlexs22 last updated on 07/Mar/21
$$\mathrm{waw}..\mathrm{thank}\:\mathrm{you}\:\mathrm{sir} \\ $$
Commented by greg_ed last updated on 01/Apr/21
$$\boldsymbol{\mathrm{very}}\:\boldsymbol{\mathrm{nice}}\:! \\ $$