Menu Close

What-is-the-equation-of-a-tangent-to-a-circle-whose-equation-is-x-2-y-2-2x-4y-1-at-point-1-5-3-




Question Number 136604 by bemath last updated on 23/Mar/21
  What is the equation of a tangent to a circle whose equation is x^2+y^2−2x−4y=1 at point (1+√5,3)
What is the equation of a tangent to a circle whose equation is x^2+y^2−2x−4y=1 at point (1+√5,3)
Answered by EDWIN88 last updated on 23/Mar/21
step(1) is the point on the circle ?  (1+(√5))^2 +3^2 −2(1+(√5))−4.3 =    6+2(√5) + 9−2−2(√5) −12 = 1 (yes it is on the circle )  step(2) find slope the line from the center   to the given point ⇒ m=((3−2)/(1+(√5)−1)) = (1/( (√5)))  step(3) find the slope of tangent line   is −(1/m) = −(√5)  step(4) we get the tangent has equation  y = −(√5) (x−1−(√5)) + 3  y=−x(√5) +(√5) + 8
step(1)isthepointonthecircle?(1+5)2+322(1+5)4.3=6+25+922512=1(yesitisonthecircle)step(2)findslopethelinefromthecentertothegivenpointm=321+51=15step(3)findtheslopeoftangentlineis1m=5step(4)wegetthetangenthasequationy=5(x15)+3y=x5+5+8
Commented by bemath last updated on 24/Mar/21
Answered by greg_ed last updated on 24/Mar/21
step (1) : find the centre I of the cercle (C ) given.  (C) : x^2 +y^2 −2x−4y = 1 ⇒   I((2/2) ; (4/2)) ⇒  I(1 ; 2).  step (2) : M(x;y) ∈ (D ) the tangent and A(1+(√5) ; 3)  IA^(→) .AM^(→)  = 0^→  ⇔  (1+(√5)−1)(x−1−(√5))+(3−2)(y−3) =  0 ⇔  (√5)(x−1−(√5))+y−3 = 0 ⇔  x(√5)+y−(√5)−5−3 = 0 ⇔  x(√5)+y−(√5)−8 = 0 ⇔  x(√5)+y−((√5)+8) = 0.
\boldsymbolstep(1):\boldsymbolfind\boldsymbolthe\boldsymbolcentre\boldsymbolI\boldsymbolof\boldsymbolthe\boldsymbolcercle(C)\boldsymbolgiven.(C):\boldsymbolx2+\boldsymboly22\boldsymbolx4\boldsymboly=1\boldsymbolI(22;42)\boldsymbolI(1;2).\boldsymbolstep(2):\boldsymbolM(\boldsymbolx;\boldsymboly)(D)\boldsymbolthe\boldsymboltangent\boldsymboland\boldsymbolA(1+5;3)\boldsymbolIA.\boldsymbolAM=0(1+51)(\boldsymbolx15)+(32)(\boldsymboly3)=05(\boldsymbolx15)+\boldsymboly3=0\boldsymbolx5+\boldsymboly553=0\boldsymbolx5+\boldsymboly58=0\boldsymbolx5+\boldsymboly(5+8)=0.
Commented by bemath last updated on 24/Mar/21
via vector
viavectorviavector

Leave a Reply

Your email address will not be published. Required fields are marked *