Menu Close

what-is-the-maximum-and-minimum-value-of-sinx-cosx-sinxcosx-




Question Number 10458 by paonky last updated on 10/Feb/17
what is the maximum and minimum  value of   sinx + cosx + sinxcosx
whatisthemaximumandminimumvalueofsinx+cosx+sinxcosx
Answered by mrW1 last updated on 10/Feb/17
sinx +cos x  =(√2)(sin x×((√2)/2)+cos x×((√2)/2))  =(√2)(sin x×cos (π/4)+cos x×sin (π/4))  =(√2)sin (x+(π/4))  sin xcos x=(1/2)sin 2x=−(1/2)cos (2x+(π/2))  =−(1/2)cos 2(x+(π/4))=−(1/2)[1−2sin^2  (x+(π/4))]  =sin^2  (x+(π/4))−(1/2)    f=sinx + cosx + sinxcosx  =(√2)sin (x+(π/4))+sin^2  (x+(π/4))−(1/2)  =(((√2)/2))^2 +2×((√2)/2)sin (x+(π/4))+sin^2  (x+(π/4))−1  =[((√2)/2)+sin (x+(π/4))]^2 −1    when sin (x+(π/4))=−((√2)/2) , i.e. x=π+2iπ or x=((3π)/2)+2iπ  ⇒ f_(min) =−1  when sin (x+(π/4))=1, i.e. x=(π/4)+2iπ  ⇒ f_(max) =(((√2)/2)+1)^2 −1=(1/2)+(√2)≈1.914
sinx+cosx=2(sinx×22+cosx×22)=2(sinx×cosπ4+cosx×sinπ4)=2sin(x+π4)sinxcosx=12sin2x=12cos(2x+π2)=12cos2(x+π4)=12[12sin2(x+π4)]=sin2(x+π4)12f=sinx+cosx+sinxcosx=2sin(x+π4)+sin2(x+π4)12=(22)2+2×22sin(x+π4)+sin2(x+π4)1=[22+sin(x+π4)]21whensin(x+π4)=22,i.e.x=π+2iπorx=3π2+2iπfmin=1whensin(x+π4)=1,i.e.x=π4+2iπfmax=(22+1)21=12+21.914
Commented by paonky last updated on 10/Feb/17
thank you sir
thankyousir

Leave a Reply

Your email address will not be published. Required fields are marked *