what-is-the-maximum-and-minimum-value-of-sinx-cosx-sinxcosx- Tinku Tara June 3, 2023 Trigonometry 0 Comments FacebookTweetPin Question Number 10458 by paonky last updated on 10/Feb/17 whatisthemaximumandminimumvalueofsinx+cosx+sinxcosx Answered by mrW1 last updated on 10/Feb/17 sinx+cosx=2(sinx×22+cosx×22)=2(sinx×cosπ4+cosx×sinπ4)=2sin(x+π4)sinxcosx=12sin2x=−12cos(2x+π2)=−12cos2(x+π4)=−12[1−2sin2(x+π4)]=sin2(x+π4)−12f=sinx+cosx+sinxcosx=2sin(x+π4)+sin2(x+π4)−12=(22)2+2×22sin(x+π4)+sin2(x+π4)−1=[22+sin(x+π4)]2−1whensin(x+π4)=−22,i.e.x=π+2iπorx=3π2+2iπ⇒fmin=−1whensin(x+π4)=1,i.e.x=π4+2iπ⇒fmax=(22+1)2−1=12+2≈1.914 Commented by paonky last updated on 10/Feb/17 thankyousir Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-141531Next Next post: Question-141529 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.