Menu Close

What-is-the-maximum-value-of-abc-if-a-b-c-5-and-ab-bc-ca-7-




Question Number 134817 by bramlexs22 last updated on 07/Mar/21
  What is the maximum value of abc if a+b+c = 5 and ab+bc+ca = 7?
What is the maximum value of abc if a+b+c = 5 and ab+bc+ca = 7?
Commented by bramlexs22 last updated on 09/Mar/21
thanks you all sir
thanksyouallsir
Commented by john_santu last updated on 08/Mar/21
let a+b = x then c = 5−x  (i) xc = (a+b)c = ac+bc = 7−ab  then ab = 7−xc so abc = (7−xc)c  abc = 7c−xc^2  , injecting c=5−x  we get abc = f(x)= 7(5−x)−x(5−x)^2   f(x)= 35−7x−x(x^2 −10x+25)  f(x)=−x^3 +10x^2 −32x+35   (df/dx) = −3x^2 +20x−32 = 0  we get  { ((x=(8/3))),((x=4)) :}   (d^2 f/dx^2 ) = −6x+20∣_(x= 4) <0  and   (d^2 f/dx^2 ) = −6x+20∣_(x = (8/3)) = −((48)/3)+20 >0   so f(x)_(max)  for x = 4 and f(x)_(min ) for x=(8/3)  ∴ max value is f(4)=−4^3 +10.4^2 −32.4+35   f(4)= −64+160−128+35 = 3  when a+b=4 and c = 1 . from eq(2)  ab+ac+bc = 7⇒ab+a+b = 7 ;   ab = 3 ∧b = 4−a ; we get a(4−a)=3  a^2 −4a+3 = 0 → { ((a=1→b=3 or)),((a=3→b=1 )) :}  (a,b,c) = (1,3,1) or (3,1,1)  clearly max is f(4) = 3  min value is f((8/3))=−((8/3))^3 +10((8/3))^2 −32((8/3))+35
leta+b=xthenc=5x(i)xc=(a+b)c=ac+bc=7abthenab=7xcsoabc=(7xc)cabc=7cxc2,injectingc=5xwegetabc=f(x)=7(5x)x(5x)2f(x)=357xx(x210x+25)f(x)=x3+10x232x+35dfdx=3x2+20x32=0weget{x=83x=4d2fdx2=6x+20x=4<0andd2fdx2=6x+20x=83=483+20>0sof(x)maxforx=4andf(x)minforx=83maxvalueisf(4)=43+10.4232.4+35f(4)=64+160128+35=3whena+b=4andc=1.fromeq(2)ab+ac+bc=7ab+a+b=7;ab=3b=4a;wegeta(4a)=3a24a+3=0{a=1b=3ora=3b=1(a,b,c)=(1,3,1)or(3,1,1)clearlymaxisf(4)=3minvalueisf(83)=(83)3+10(83)232(83)+35
Commented by mr W last updated on 08/Mar/21
very nice! i used also similar method,   but maybe made a calculation mistake  somewhere.
verynice!iusedalsosimilarmethod,butmaybemadeacalculationmistakesomewhere.
Answered by liberty last updated on 07/Mar/21
(1)a=5−(b+c) (2) (5−(b+c))b+bc+c(5−(b+c))=7  ⇒ 5b−b^2 −bc+bc+5c−bc−c^2 =7  ⇒5b−b^2 −bc+5c+c^2  = 7  (3)abc = (5−(b+c))bc =5bc−b^2 c−bc^2   let f(b,c)=5bc−b^2 c−bc^2 +λ(5b−b^2 −bc+5c+c^2 −7)  (i) f_b = 5c−2bc−c^2 +λ(5−2b−c)=0  (ii)f_c = 5b−b^2 −2bc+λ(−b+5+2c)= 0  (iii)f_(λ ) = 5b−b^2 −bc+5c+c^2  = 7  from eq (i) &(ii) we get  { ((λ=((c^2 +2bc−5c)/(5−2b−c)))),((λ = ((b^2 +2bc−5b)/(5−b+2c)))) :}  and b^2 −5b = c^2 +5c−bc−7  ⇒ λ = λ ; ((c^2 +2bc−5c)/(5−2b−c)) = ((c^2 +5c−bc−7+2bc)/(5−b+2c))  next...
(1)a=5(b+c)(2)(5(b+c))b+bc+c(5(b+c))=75bb2bc+bc+5cbcc2=75bb2bc+5c+c2=7(3)abc=(5(b+c))bc=5bcb2cbc2letf(b,c)=5bcb2cbc2+λ(5bb2bc+5c+c27)(i)fb=5c2bcc2+λ(52bc)=0(ii)fc=5bb22bc+λ(b+5+2c)=0(iii)fλ=5bb2bc+5c+c2=7fromeq(i)&(ii)weget{λ=c2+2bc5c52bcλ=b2+2bc5b5b+2candb25b=c2+5cbc7λ=λ;c2+2bc5c52bc=c2+5cbc7+2bc5b+2cnext
Answered by mr W last updated on 08/Mar/21
c=5−(a+b)  ab+(a+b)c=7  c=((7−ab)/(a+b))=5−(a+b)  ⇒ab=7−(a+b)(5−(a+b))  P=abc=ab(5−(a+b))=[7−(a+b)(5−(a+b))](5−(a+b))  let t=a+b  ⇒P=[7−t(5−t)](5−t)=−t^3 +10t^2 −32t+35  (dP/dt)=−3t^2 +20t−32=0  (3t−8)(t−4)=0  ⇒t=(8/3), 4  (d^2 P/dt^2 )=−6t+20  at t=(8/3): (d^2 P/dt^2 )=−6×(8/3)+20=4>0 ⇒min.  at t=4: (d^2 P/dt^2 )=−6×4+20=−4<0 ⇒max.  ⇒P_(min) =[7−(8/3)(5−(8/3))](5−(8/3))=((49)/(27))  ⇒P_(max) =[7−4(5−4)](5−4)=3
c=5(a+b)ab+(a+b)c=7c=7aba+b=5(a+b)ab=7(a+b)(5(a+b))P=abc=ab(5(a+b))=[7(a+b)(5(a+b))](5(a+b))lett=a+bP=[7t(5t)](5t)=t3+10t232t+35dPdt=3t2+20t32=0(3t8)(t4)=0t=83,4d2Pdt2=6t+20att=83:d2Pdt2=6×83+20=4>0min.att=4:d2Pdt2=6×4+20=4<0max.Pmin=[783(583)](583)=4927Pmax=[74(54)](54)=3
Answered by ajfour last updated on 08/Mar/21
x^3 −5x^2 +7x−m=0  where  a+b+c=5  ab+bc+ca=7  abc=m  m=x^3 −5x^2 +7x  (dm/dx)=3x^2 −10x+7  x=((10±(√(100−84)))/6)  x=((10±4)/6)  ⇒  x=1, (7/3)  for x=1,  m=3  for  x=(7/3)  ,m=((49)/(27))  hence (abc)_(max) = m_(max) =3
x35x2+7xm=0wherea+b+c=5ab+bc+ca=7abc=mm=x35x2+7xdmdx=3x210x+7x=10±100846x=10±46x=1,73forx=1,m=3forx=73,m=4927hence(abc)max=mmax=3
Commented by mr W last updated on 09/Mar/21
nice idea!
niceidea!
Commented by ajfour last updated on 09/Mar/21
thanks sir, m little shaken by  circumstances, n anyway taken  to watching Utube movies n  music, cant focus here like i  used to, lets see how long; I m  so very unpredictable even to  myself...
thankssir,mlittleshakenbycircumstances,nanywaytakentowatchingUtubemoviesnmusic,cantfocusherelikeiusedto,letsseehowlong;Imsoveryunpredictableeventomyself
Commented by mr W last updated on 09/Mar/21
take best care of yourself sir!
takebestcareofyourselfsir!

Leave a Reply

Your email address will not be published. Required fields are marked *