Question Number 134817 by bramlexs22 last updated on 07/Mar/21
$$ \\ $$What is the maximum value of abc if a+b+c = 5 and ab+bc+ca = 7?
Commented by bramlexs22 last updated on 09/Mar/21
$$\mathrm{thanks}\:\mathrm{you}\:\mathrm{all}\:\mathrm{sir} \\ $$
Commented by john_santu last updated on 08/Mar/21
$${let}\:{a}+{b}\:=\:{x}\:{then}\:{c}\:=\:\mathrm{5}−{x} \\ $$$$\left({i}\right)\:{xc}\:=\:\left({a}+{b}\right){c}\:=\:{ac}+{bc}\:=\:\mathrm{7}−{ab} \\ $$$${then}\:{ab}\:=\:\mathrm{7}−{xc}\:{so}\:{abc}\:=\:\left(\mathrm{7}−{xc}\right){c} \\ $$$${abc}\:=\:\mathrm{7}{c}−{xc}^{\mathrm{2}} \:,\:{injecting}\:{c}=\mathrm{5}−{x} \\ $$$${we}\:{get}\:{abc}\:=\:{f}\left({x}\right)=\:\mathrm{7}\left(\mathrm{5}−{x}\right)−{x}\left(\mathrm{5}−{x}\right)^{\mathrm{2}} \\ $$$${f}\left({x}\right)=\:\mathrm{35}−\mathrm{7}{x}−{x}\left({x}^{\mathrm{2}} −\mathrm{10}{x}+\mathrm{25}\right) \\ $$$${f}\left({x}\right)=−{x}^{\mathrm{3}} +\mathrm{10}{x}^{\mathrm{2}} −\mathrm{32}{x}+\mathrm{35}\: \\ $$$$\frac{{df}}{{dx}}\:=\:−\mathrm{3}{x}^{\mathrm{2}} +\mathrm{20}{x}−\mathrm{32}\:=\:\mathrm{0} \\ $$$${we}\:{get}\:\begin{cases}{{x}=\frac{\mathrm{8}}{\mathrm{3}}}\\{{x}=\mathrm{4}}\end{cases} \\ $$$$\:\frac{{d}^{\mathrm{2}} {f}}{{dx}^{\mathrm{2}} }\:=\:−\mathrm{6}{x}+\mathrm{20}\mid_{{x}=\:\mathrm{4}} <\mathrm{0}\:\:{and}\: \\ $$$$\frac{{d}^{\mathrm{2}} {f}}{{dx}^{\mathrm{2}} }\:=\:−\mathrm{6}{x}+\mathrm{20}\mid_{{x}\:=\:\frac{\mathrm{8}}{\mathrm{3}}} =\:−\frac{\mathrm{48}}{\mathrm{3}}+\mathrm{20}\:>\mathrm{0}\: \\ $$$${so}\:{f}\left({x}\right)_{{max}} \:{for}\:{x}\:=\:\mathrm{4}\:{and}\:{f}\left({x}\right)_{{min}\:} {for}\:{x}=\frac{\mathrm{8}}{\mathrm{3}} \\ $$$$\therefore\:{max}\:{value}\:{is}\:{f}\left(\mathrm{4}\right)=−\mathrm{4}^{\mathrm{3}} +\mathrm{10}.\mathrm{4}^{\mathrm{2}} −\mathrm{32}.\mathrm{4}+\mathrm{35}\: \\ $$$${f}\left(\mathrm{4}\right)=\:−\mathrm{64}+\mathrm{160}−\mathrm{128}+\mathrm{35}\:=\:\mathrm{3} \\ $$$${when}\:{a}+{b}=\mathrm{4}\:{and}\:{c}\:=\:\mathrm{1}\:.\:{from}\:{eq}\left(\mathrm{2}\right) \\ $$$${ab}+{ac}+{bc}\:=\:\mathrm{7}\Rightarrow{ab}+{a}+{b}\:=\:\mathrm{7}\:;\: \\ $$$${ab}\:=\:\mathrm{3}\:\wedge{b}\:=\:\mathrm{4}−{a}\:;\:{we}\:{get}\:{a}\left(\mathrm{4}−{a}\right)=\mathrm{3} \\ $$$${a}^{\mathrm{2}} −\mathrm{4}{a}+\mathrm{3}\:=\:\mathrm{0}\:\rightarrow\begin{cases}{{a}=\mathrm{1}\rightarrow{b}=\mathrm{3}\:{or}}\\{{a}=\mathrm{3}\rightarrow{b}=\mathrm{1}\:}\end{cases} \\ $$$$\left({a},{b},{c}\right)\:=\:\left(\mathrm{1},\mathrm{3},\mathrm{1}\right)\:{or}\:\left(\mathrm{3},\mathrm{1},\mathrm{1}\right) \\ $$$${clearly}\:{max}\:{is}\:{f}\left(\mathrm{4}\right)\:=\:\mathrm{3} \\ $$$${min}\:{value}\:{is}\:{f}\left(\frac{\mathrm{8}}{\mathrm{3}}\right)=−\left(\frac{\mathrm{8}}{\mathrm{3}}\right)^{\mathrm{3}} +\mathrm{10}\left(\frac{\mathrm{8}}{\mathrm{3}}\right)^{\mathrm{2}} −\mathrm{32}\left(\frac{\mathrm{8}}{\mathrm{3}}\right)+\mathrm{35} \\ $$$$ \\ $$
Commented by mr W last updated on 08/Mar/21
$${very}\:{nice}!\:{i}\:{used}\:{also}\:{similar}\:{method},\: \\ $$$${but}\:{maybe}\:{made}\:{a}\:{calculation}\:{mistake} \\ $$$${somewhere}. \\ $$
Answered by liberty last updated on 07/Mar/21
$$\left(\mathrm{1}\right){a}=\mathrm{5}−\left({b}+{c}\right)\:\left(\mathrm{2}\right)\:\left(\mathrm{5}−\left({b}+{c}\right)\right){b}+{bc}+{c}\left(\mathrm{5}−\left({b}+{c}\right)\right)=\mathrm{7} \\ $$$$\Rightarrow\:\mathrm{5}{b}−{b}^{\mathrm{2}} −{bc}+{bc}+\mathrm{5}{c}−{bc}−{c}^{\mathrm{2}} =\mathrm{7} \\ $$$$\Rightarrow\mathrm{5}{b}−{b}^{\mathrm{2}} −{bc}+\mathrm{5}{c}+{c}^{\mathrm{2}} \:=\:\mathrm{7} \\ $$$$\left(\mathrm{3}\right){abc}\:=\:\left(\mathrm{5}−\left({b}+{c}\right)\right){bc}\:=\mathrm{5}{bc}−{b}^{\mathrm{2}} {c}−{bc}^{\mathrm{2}} \\ $$$${let}\:{f}\left({b},{c}\right)=\mathrm{5}{bc}−{b}^{\mathrm{2}} {c}−{bc}^{\mathrm{2}} +\lambda\left(\mathrm{5}{b}−{b}^{\mathrm{2}} −{bc}+\mathrm{5}{c}+{c}^{\mathrm{2}} −\mathrm{7}\right) \\ $$$$\left({i}\right)\:{f}_{{b}} =\:\mathrm{5}{c}−\mathrm{2}{bc}−{c}^{\mathrm{2}} +\lambda\left(\mathrm{5}−\mathrm{2}{b}−{c}\right)=\mathrm{0} \\ $$$$\left({ii}\right){f}_{{c}} =\:\mathrm{5}{b}−{b}^{\mathrm{2}} −\mathrm{2}{bc}+\lambda\left(−{b}+\mathrm{5}+\mathrm{2}{c}\right)=\:\mathrm{0} \\ $$$$\left({iii}\right){f}_{\lambda\:} =\:\mathrm{5}{b}−{b}^{\mathrm{2}} −{bc}+\mathrm{5}{c}+{c}^{\mathrm{2}} \:=\:\mathrm{7} \\ $$$${from}\:{eq}\:\left({i}\right)\:\&\left({ii}\right)\:{we}\:{get}\:\begin{cases}{\lambda=\frac{{c}^{\mathrm{2}} +\mathrm{2}{bc}−\mathrm{5}{c}}{\mathrm{5}−\mathrm{2}{b}−{c}}}\\{\lambda\:=\:\frac{{b}^{\mathrm{2}} +\mathrm{2}{bc}−\mathrm{5}{b}}{\mathrm{5}−{b}+\mathrm{2}{c}}}\end{cases} \\ $$$${and}\:{b}^{\mathrm{2}} −\mathrm{5}{b}\:=\:{c}^{\mathrm{2}} +\mathrm{5}{c}−{bc}−\mathrm{7} \\ $$$$\Rightarrow\:\lambda\:=\:\lambda\:;\:\frac{{c}^{\mathrm{2}} +\mathrm{2}{bc}−\mathrm{5}{c}}{\mathrm{5}−\mathrm{2}{b}−{c}}\:=\:\frac{{c}^{\mathrm{2}} +\mathrm{5}{c}−{bc}−\mathrm{7}+\mathrm{2}{bc}}{\mathrm{5}−{b}+\mathrm{2}{c}} \\ $$$${next}… \\ $$
Answered by mr W last updated on 08/Mar/21
$${c}=\mathrm{5}−\left({a}+{b}\right) \\ $$$${ab}+\left({a}+{b}\right){c}=\mathrm{7} \\ $$$${c}=\frac{\mathrm{7}−{ab}}{{a}+{b}}=\mathrm{5}−\left({a}+{b}\right) \\ $$$$\Rightarrow{ab}=\mathrm{7}−\left({a}+{b}\right)\left(\mathrm{5}−\left({a}+{b}\right)\right) \\ $$$${P}={abc}={ab}\left(\mathrm{5}−\left({a}+{b}\right)\right)=\left[\mathrm{7}−\left({a}+{b}\right)\left(\mathrm{5}−\left({a}+{b}\right)\right)\right]\left(\mathrm{5}−\left({a}+{b}\right)\right) \\ $$$${let}\:{t}={a}+{b} \\ $$$$\Rightarrow{P}=\left[\mathrm{7}−{t}\left(\mathrm{5}−{t}\right)\right]\left(\mathrm{5}−{t}\right)=−{t}^{\mathrm{3}} +\mathrm{10}{t}^{\mathrm{2}} −\mathrm{32}{t}+\mathrm{35} \\ $$$$\frac{{dP}}{{dt}}=−\mathrm{3}{t}^{\mathrm{2}} +\mathrm{20}{t}−\mathrm{32}=\mathrm{0} \\ $$$$\left(\mathrm{3}{t}−\mathrm{8}\right)\left({t}−\mathrm{4}\right)=\mathrm{0} \\ $$$$\Rightarrow{t}=\frac{\mathrm{8}}{\mathrm{3}},\:\mathrm{4} \\ $$$$\frac{{d}^{\mathrm{2}} {P}}{{dt}^{\mathrm{2}} }=−\mathrm{6}{t}+\mathrm{20} \\ $$$${at}\:{t}=\frac{\mathrm{8}}{\mathrm{3}}:\:\frac{{d}^{\mathrm{2}} {P}}{{dt}^{\mathrm{2}} }=−\mathrm{6}×\frac{\mathrm{8}}{\mathrm{3}}+\mathrm{20}=\mathrm{4}>\mathrm{0}\:\Rightarrow{min}. \\ $$$${at}\:{t}=\mathrm{4}:\:\frac{{d}^{\mathrm{2}} {P}}{{dt}^{\mathrm{2}} }=−\mathrm{6}×\mathrm{4}+\mathrm{20}=−\mathrm{4}<\mathrm{0}\:\Rightarrow{max}. \\ $$$$\Rightarrow{P}_{{min}} =\left[\mathrm{7}−\frac{\mathrm{8}}{\mathrm{3}}\left(\mathrm{5}−\frac{\mathrm{8}}{\mathrm{3}}\right)\right]\left(\mathrm{5}−\frac{\mathrm{8}}{\mathrm{3}}\right)=\frac{\mathrm{49}}{\mathrm{27}} \\ $$$$\Rightarrow{P}_{{max}} =\left[\mathrm{7}−\mathrm{4}\left(\mathrm{5}−\mathrm{4}\right)\right]\left(\mathrm{5}−\mathrm{4}\right)=\mathrm{3} \\ $$
Answered by ajfour last updated on 08/Mar/21
$${x}^{\mathrm{3}} −\mathrm{5}{x}^{\mathrm{2}} +\mathrm{7}{x}−{m}=\mathrm{0} \\ $$$${where} \\ $$$${a}+{b}+{c}=\mathrm{5} \\ $$$${ab}+{bc}+{ca}=\mathrm{7} \\ $$$${abc}={m} \\ $$$${m}={x}^{\mathrm{3}} −\mathrm{5}{x}^{\mathrm{2}} +\mathrm{7}{x} \\ $$$$\frac{{dm}}{{dx}}=\mathrm{3}{x}^{\mathrm{2}} −\mathrm{10}{x}+\mathrm{7} \\ $$$${x}=\frac{\mathrm{10}\pm\sqrt{\mathrm{100}−\mathrm{84}}}{\mathrm{6}} \\ $$$${x}=\frac{\mathrm{10}\pm\mathrm{4}}{\mathrm{6}}\:\:\Rightarrow\:\:{x}=\mathrm{1},\:\frac{\mathrm{7}}{\mathrm{3}} \\ $$$${for}\:{x}=\mathrm{1},\:\:{m}=\mathrm{3} \\ $$$${for}\:\:{x}=\frac{\mathrm{7}}{\mathrm{3}}\:\:,{m}=\frac{\mathrm{49}}{\mathrm{27}} \\ $$$${hence}\:\left({abc}\right)_{{max}} =\:{m}_{{max}} =\mathrm{3} \\ $$$$ \\ $$$$ \\ $$
Commented by mr W last updated on 09/Mar/21
$${nice}\:{idea}! \\ $$
Commented by ajfour last updated on 09/Mar/21
$${thanks}\:{sir},\:{m}\:{little}\:{shaken}\:{by} \\ $$$${circumstances},\:{n}\:{anyway}\:{taken} \\ $$$${to}\:{watching}\:{Utube}\:{movies}\:{n} \\ $$$${music},\:{cant}\:{focus}\:{here}\:{like}\:{i} \\ $$$${used}\:{to},\:{lets}\:{see}\:{how}\:{long};\:{I}\:{m} \\ $$$${so}\:{very}\:{unpredictable}\:{even}\:{to} \\ $$$${myself}… \\ $$
Commented by mr W last updated on 09/Mar/21
$${take}\:{best}\:{care}\:{of}\:{yourself}\:{sir}! \\ $$