Menu Close

what-is-value-sin-36-plese-give-me-answer-




Question Number 8289 by rhm last updated on 07/Oct/16
what is value  sin 36°  plese give me answer
$${what}\:{is}\:{value} \\ $$$${sin}\:\mathrm{36}° \\ $$$${plese}\:{give}\:{me}\:{answer} \\ $$
Commented by rhm last updated on 07/Oct/16
sir answer
$${sir}\:{answer} \\ $$
Commented by Rasheed Soomro last updated on 07/Oct/16
sin 36°=((√(2(√5) −10))/4)
$${sin}\:\mathrm{36}°=\frac{\sqrt{\mathrm{2}\sqrt{\mathrm{5}}\:−\mathrm{10}}}{\mathrm{4}} \\ $$
Answered by ridwan balatif last updated on 15/Oct/16
let:  sin18^o =sinθ  sin36^o =cos54^o   sin2θ  =cos3θ  2sinθcosθ=cos2θcosθ−sinθsin2θ  2sinθcosθ=cos2θcosθ−sinθ.(2sinθcosθ)  2sinθ=cos2θ−2sin^2 θ  2sinθ=1−2sin^2 θ−2sin^2 θ  4sin^2 θ+2sinθ−1=0  sinθ_(1,2) =((−b±(√D))/(2a))  sinθ_(1,2) =((−2±(√(20)))/(2.4))  sinθ_(1,2) =((−1±(√5))/4)  we take positive, because sin18^o  has positive value  sinθ=((−1+(√5))/4)  so, sin18^o =((−1+(√5))/4)   and cos18^o =((√(10+2(√5)))/4)  sin36^o =2sin18^o cos18^o   sin36^o =(((−1+(√5))/8))((√(10+2(√5))))
$$\mathrm{let}:\:\:\mathrm{sin18}^{\mathrm{o}} =\mathrm{sin}\theta \\ $$$$\mathrm{sin36}^{\mathrm{o}} =\mathrm{cos54}^{\mathrm{o}} \\ $$$$\mathrm{sin2}\theta\:\:=\mathrm{cos3}\theta \\ $$$$\mathrm{2sin}\theta\mathrm{cos}\theta=\mathrm{cos2}\theta\mathrm{cos}\theta−\mathrm{sin}\theta\mathrm{sin2}\theta \\ $$$$\mathrm{2sin}\theta\mathrm{cos}\theta=\mathrm{cos2}\theta\mathrm{cos}\theta−\mathrm{sin}\theta.\left(\mathrm{2sin}\theta\mathrm{cos}\theta\right) \\ $$$$\mathrm{2sin}\theta=\mathrm{cos2}\theta−\mathrm{2sin}^{\mathrm{2}} \theta \\ $$$$\mathrm{2sin}\theta=\mathrm{1}−\mathrm{2sin}^{\mathrm{2}} \theta−\mathrm{2sin}^{\mathrm{2}} \theta \\ $$$$\mathrm{4sin}^{\mathrm{2}} \theta+\mathrm{2sin}\theta−\mathrm{1}=\mathrm{0} \\ $$$$\mathrm{sin}\theta_{\mathrm{1},\mathrm{2}} =\frac{−\mathrm{b}\pm\sqrt{\mathrm{D}}}{\mathrm{2a}} \\ $$$$\mathrm{sin}\theta_{\mathrm{1},\mathrm{2}} =\frac{−\mathrm{2}\pm\sqrt{\mathrm{20}}}{\mathrm{2}.\mathrm{4}} \\ $$$$\mathrm{sin}\theta_{\mathrm{1},\mathrm{2}} =\frac{−\mathrm{1}\pm\sqrt{\mathrm{5}}}{\mathrm{4}} \\ $$$$\mathrm{we}\:\mathrm{take}\:\mathrm{positive},\:\mathrm{because}\:\mathrm{sin18}^{\mathrm{o}} \:\mathrm{has}\:\mathrm{positive}\:\mathrm{value} \\ $$$$\mathrm{sin}\theta=\frac{−\mathrm{1}+\sqrt{\mathrm{5}}}{\mathrm{4}} \\ $$$$\mathrm{so},\:\mathrm{sin18}^{\mathrm{o}} =\frac{−\mathrm{1}+\sqrt{\mathrm{5}}}{\mathrm{4}}\:\:\:\mathrm{and}\:\mathrm{cos18}^{\mathrm{o}} =\frac{\sqrt{\mathrm{10}+\mathrm{2}\sqrt{\mathrm{5}}}}{\mathrm{4}} \\ $$$$\mathrm{sin36}^{\mathrm{o}} =\mathrm{2sin18}^{\mathrm{o}} \mathrm{cos18}^{\mathrm{o}} \\ $$$$\mathrm{sin36}^{\mathrm{o}} =\left(\frac{−\mathrm{1}+\sqrt{\mathrm{5}}}{\mathrm{8}}\right)\left(\sqrt{\mathrm{10}+\mathrm{2}\sqrt{\mathrm{5}}}\right) \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *