Menu Close

what-minimum-value-of-f-x-9tan-2-x-4cot-2-x-




Question Number 78207 by jagoll last updated on 15/Jan/20
what minimum   value of f(x)= 9tan^2 (x)+4cot^2 (x)
whatminimumvalueoff(x)=9tan2(x)+4cot2(x)
Commented by jagoll last updated on 15/Jan/20
i′m got 24. it right answer?
imgot24.itrightanswer?
Commented by john santu last updated on 15/Jan/20
sir Mjs it answer is correct?
sirMjsitansweriscorrect?
Commented by MJS last updated on 15/Jan/20
I get 12
Iget12
Commented by jagoll last updated on 15/Jan/20
how sir?
howsir?
Commented by MJS last updated on 15/Jan/20
let tan x =t  f(t)=9t^2 +(4/t^2 )  f′(t)=18t−(8/t^3 )=(2/t^3 )(3t^2 −2)(3t^2 +2)=0  ⇒ t=±((√6)/3)  f′′(t)=(6/t^4 )(3t^4 +4) >0∀t∈R ⇒ minima at ±((√6)/3)  tan x =±((√6)/3) ⇒ x=nπ±arctan ((√6)/3)  f(nπ±arctan ((√6)/3))=12
lettanx=tf(t)=9t2+4t2f(t)=18t8t3=2t3(3t22)(3t2+2)=0t=±63f(t)=6t4(3t4+4)>0tRminimaat±63tanx=±63x=nπ±arctan63f(nπ±arctan63)=12
Commented by jagoll last updated on 15/Jan/20
thanks sir. my answer is wrong
thankssir.myansweriswrong
Answered by behi83417@gmail.com last updated on 15/Jan/20
9tg^2 x.4cotg^2 x=36=cons.  ⇒f(x) is minimum when:9tg^2 x=4cotg^2 x  ⇒tg^4 x=(4/9)=((36)/(81))⇒tgx=±((√6)/3)  ⇒f_(min) =9×(6/9)+4×(9/6)=6+6=12 .■
9tg2x.4cotg2x=36=cons.f(x)isminimumwhen:9tg2x=4cotg2xtg4x=49=3681tgx=±63fmin=9×69+4×96=6+6=12.◼
Commented by jagoll last updated on 15/Jan/20
thanks sir
thankssir

Leave a Reply

Your email address will not be published. Required fields are marked *