Menu Close

What-s-the-minimum-value-of-13a-13b-2c-2a-2b-24a-b-13c-2b-2c-a-24b-13c-2a-2c-a-b-c-are-positive-numbers-I-think-nobody-can-solve-this-




Question Number 76061 by tw000001 last updated on 23/Dec/19
What′s the minimum value of  ((13a+13b+2c)/(2a+2b))+((24a−b+13c)/(2b+2c))+((−a+24b+13c)/(2a+2c))?  (a,b,c are positive numbers.)  I think nobody can solve this.
Whatstheminimumvalueof13a+13b+2c2a+2b+24ab+13c2b+2c+a+24b+13c2a+2c?(a,b,carepositivenumbers.)Ithinknobodycansolvethis.
Answered by MJS last updated on 23/Dec/19
((13a+13b+2c)/(2a+2b))+((24a−b+13c)/(2b+2c))+((−a+24b+13c)/(2a+2c))=  =(c/(a+b))+((12b+7c)/(a+c))+((12a+7c)/(b+c))+((11)/2)  we see that a and b are of equal weight but  c is different  let a=pc∧b=qc  (1/(p+q))+((12q+7)/(p+1))+((12p+7)/(q+1))+((11)/2)  to ensure positive values  let p=x^2 ∧q=y^2   (1/(x^2 +y^2 ))+((12y^2 +7)/(x^2 +1))+((12x^2 +7)/(y^2 +1))+((11)/2)  now I simply tried y=x  −((10)/(x^2 +1))+(1/(2x^2 ))+((59)/2)=((59x^4 +40x^2 +1)/(2x^2 (x^2 +1)))  (d/dx)[((59x^4 +40x^2 +1)/(2x^2 (x^2 +1)))]=0  ((19x^4 −2x^2 −1)/(x^3 (x^2 +1)^2 ))=0 ⇒ x^2 =((1+2(√5))/(19))  ⇒ min ((59x^4 +40x^2 +1)/(2x^2 (x^2 +1))) =19+2(√5)≈23.472136  at a=b=((1+2(√5))/(19))c; c∈R^+
13a+13b+2c2a+2b+24ab+13c2b+2c+a+24b+13c2a+2c==ca+b+12b+7ca+c+12a+7cb+c+112weseethataandbareofequalweightbutcisdifferentleta=pcb=qc1p+q+12q+7p+1+12p+7q+1+112toensurepositivevaluesletp=x2q=y21x2+y2+12y2+7x2+1+12x2+7y2+1+112nowIsimplytriedy=x10x2+1+12x2+592=59x4+40x2+12x2(x2+1)ddx[59x4+40x2+12x2(x2+1)]=019x42x21x3(x2+1)2=0x2=1+2519min59x4+40x2+12x2(x2+1)=19+2523.472136ata=b=1+2519c;cR+
Commented by MJS last updated on 23/Dec/19
btw my name is Nobody ��
Commented by peter frank last updated on 23/Dec/19
hahahahah great man mr mjs
hahahahahgreatmanmrmjs

Leave a Reply

Your email address will not be published. Required fields are marked *