Menu Close

What-s-the-relationship-between-Dirichlet-s-function-with-s-function-That-is-n-0-1-n-2n-1-s-with-n-1-1-n-s-




Question Number 140554 by qaz last updated on 09/May/21
What′s the relationship between Dirichlet β(s) function with  ζ(s) function ? That is Σ_(n=0) ^∞ (((−1)^n )/((2n+1)^s ))  with Σ_(n=1) ^∞ (1/n^s ).
WhatstherelationshipbetweenDirichletβ(s)functionwithζ(s)function?Thatisn=0(1)n(2n+1)swithn=11ns.
Commented by qaz last updated on 09/May/21
How to evaluate β(s)′s special value?
Howtoevaluateβ(s)sspecialvalue?
Commented by qaz last updated on 09/May/21
I got ∫_0 ^(π/2) (lntan x)^2 dx  =∫_0 ^∞ (((lny)^2 )/(1+y^2 ))dy  =∫_0 ^1 (((lny)^2 )/(1+y^2 ))dy+∫_1 ^∞ (((lny)^2 )/(1+y^2 ))dy  =2∫_0 ^1 (((lny)^2 )/(1+y^2 ))dy  =2∫_0 ^∞ ((z^2 e^(−z) )/(1+e^(−2z) ))dz  =2Σ_(n=0) ^∞ (−1)^n ∫_0 ^∞ z^2 e^(−(2n+1)z) dz  =4Σ_(n=0) ^∞ (((−1)^n )/((2n+1)^3 ))=???
Igot0π/2(lntanx)2dx=0(lny)21+y2dy=01(lny)21+y2dy+1(lny)21+y2dy=201(lny)21+y2dy=20z2ez1+e2zdz=2n=0(1)n0z2e(2n+1)zdz=4n=0(1)n(2n+1)3=???
Commented by Dwaipayan Shikari last updated on 09/May/21
(π/2)tan((π/2)x)=(1/(1−x))−(1/(1+x))+(1/(3−x))−(1/(3+x))+...  Differentiating both sides respect to x  (π^2 /4)sec^2 (((πx)/2))=(1/((1−x)^2 ))+(1/((1+x)^2 ))+(1/((3−x)^2 ))+(1/((3+x)^2 ))+...  Again  (π^3 /8)sec^2 ((π/2)x)tan((π/2)x)=(1/((1−x)^3 ))−(1/((1+x)^3 ))+(1/((3−x)^3 ))−(1/((3+x)^3 ))+..  ⇒(π^3 /8)(2)=(1/((1−(1/2))^3 ))−(1/((1+(1/2))^3 ))+(1/((3−(1/2))^3 ))−(1/((3+(1/2))^3 ))+...  ⇒(π^3 /(32))=(1/1^3 )−(1/3^3 )+(1/5^3 )−(1/7^3 )+...
π2tan(π2x)=11x11+x+13x13+x+Differentiatingbothsidesrespecttoxπ24sec2(πx2)=1(1x)2+1(1+x)2+1(3x)2+1(3+x)2+Againπ38sec2(π2x)tan(π2x)=1(1x)31(1+x)3+1(3x)31(3+x)3+..π38(2)=1(112)31(1+12)3+1(312)31(3+12)3+π332=113133+153173+
Commented by qaz last updated on 09/May/21
thanks a lot.
thanksalot.
Commented by Ar Brandon last updated on 16/May/21
f(α)=∫_0 ^(π/2) tan^α θdθ=((Γ(((α+1)/2))Γ(((1−α)/2)))/2), f(0)=(π/2)  lnf(α)=lnΓ(((α+1)/2))+lnΓ(((1−α)/2))+ln((1/2))  ((f ′(α))/(f(α)))=(1/2)(ψ(((α+1)/2))−ψ(((1−α)/2)))  f ′(0)=(π/4)(ψ((1/2))−ψ((1/2)))=0  f ′′(α)=((f(α))/4)(ψ′(((α+1)/2))+ψ′(((1−α)/2)))+((f ′(α))/2)(ψ(((α+1)/2))+ψ(((1−α)/2)))  f ′′(0)=(π/8)((π^2 /(sin^2 ((π/2)))))+0=(π^3 /8)=∫_0 ^(π/2) ln^2 (tanθ)dθ
f(α)=0π2tanαθdθ=Γ(α+12)Γ(1α2)2,f(0)=π2lnf(α)=lnΓ(α+12)+lnΓ(1α2)+ln(12)f(α)f(α)=12(ψ(α+12)ψ(1α2))f(0)=π4(ψ(12)ψ(12))=0f(α)=f(α)4(ψ(α+12)+ψ(1α2))+f(α)2(ψ(α+12)+ψ(1α2))f(0)=π8(π2sin2(π2))+0=π38=0π2ln2(tanθ)dθ

Leave a Reply

Your email address will not be published. Required fields are marked *