Menu Close

What-solutions-x-R-exist-for-the-equation-tan-1-x-cot-1-x-n-where-n-Z-




Question Number 5121 by Yozzii last updated on 15/Apr/16
What solutions x∈R exist for the   equation (tan^(−1) x)(cot^(−1) x)=n  where n∈Z?
$${What}\:{solutions}\:{x}\in\mathbb{R}\:{exist}\:{for}\:{the}\: \\ $$$${equation}\:\left({tan}^{−\mathrm{1}} {x}\right)\left({cot}^{−\mathrm{1}} {x}\right)={n} \\ $$$${where}\:{n}\in\mathbb{Z}? \\ $$
Answered by prakash jain last updated on 16/Apr/16
f(x)=tan^(−1) xcot^(−1) x  f ′(x)=((cot^(−1) x−tan^(−1) x)/(1+x^2 ))  f ′(x)=0 at x=1,x=−1  f(x) max at x=1,x=−1 and it takes value (π^2 /(16)).  The only possible value for n in question is 0.  tan^(−1) xcot^(−1) x=0 at x=0.  So x=0 is the only solution.
$${f}\left({x}\right)=\mathrm{tan}^{−\mathrm{1}} {x}\mathrm{cot}^{−\mathrm{1}} {x} \\ $$$${f}\:'\left({x}\right)=\frac{\mathrm{cot}^{−\mathrm{1}} {x}−\mathrm{tan}^{−\mathrm{1}} {x}}{\mathrm{1}+{x}^{\mathrm{2}} } \\ $$$${f}\:'\left({x}\right)=\mathrm{0}\:{at}\:{x}=\mathrm{1},{x}=−\mathrm{1} \\ $$$${f}\left({x}\right)\:{max}\:{at}\:{x}=\mathrm{1},{x}=−\mathrm{1}\:\mathrm{and}\:\mathrm{it}\:\mathrm{takes}\:\mathrm{value}\:\frac{\pi^{\mathrm{2}} }{\mathrm{16}}. \\ $$$$\mathrm{The}\:\mathrm{only}\:\mathrm{possible}\:\mathrm{value}\:\mathrm{for}\:{n}\:\mathrm{in}\:\mathrm{question}\:\mathrm{is}\:\mathrm{0}. \\ $$$$\mathrm{tan}^{−\mathrm{1}} {x}\mathrm{cot}^{−\mathrm{1}} {x}=\mathrm{0}\:\mathrm{at}\:{x}=\mathrm{0}. \\ $$$$\mathrm{So}\:{x}=\mathrm{0}\:\mathrm{is}\:\mathrm{the}\:\mathrm{only}\:\mathrm{solution}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *