Menu Close

What-solutions-x-R-exist-for-the-equation-tan-1-x-cot-1-x-n-where-n-Z-




Question Number 5121 by Yozzii last updated on 15/Apr/16
What solutions x∈R exist for the   equation (tan^(−1) x)(cot^(−1) x)=n  where n∈Z?
WhatsolutionsxRexistfortheequation(tan1x)(cot1x)=nwherenZ?
Answered by prakash jain last updated on 16/Apr/16
f(x)=tan^(−1) xcot^(−1) x  f ′(x)=((cot^(−1) x−tan^(−1) x)/(1+x^2 ))  f ′(x)=0 at x=1,x=−1  f(x) max at x=1,x=−1 and it takes value (π^2 /(16)).  The only possible value for n in question is 0.  tan^(−1) xcot^(−1) x=0 at x=0.  So x=0 is the only solution.
f(x)=tan1xcot1xf(x)=cot1xtan1x1+x2f(x)=0atx=1,x=1f(x)maxatx=1,x=1andittakesvalueπ216.Theonlypossiblevalueforninquestionis0.tan1xcot1x=0atx=0.Sox=0istheonlysolution.

Leave a Reply

Your email address will not be published. Required fields are marked *