Menu Close

What-will-be-the-minimum-area-of-a-heptagon-inscribed-in-an-unit-square-




Question Number 134002 by Dwaipayan Shikari last updated on 26/Feb/21
What will be the minimum area of a heptagon inscribed in  an unit square?
Whatwillbetheminimumareaofaheptagoninscribedinanunitsquare?
Commented by Dwaipayan Shikari last updated on 26/Feb/21
Answered by mr W last updated on 26/Feb/21
Commented by mr W last updated on 26/Feb/21
side length of heptagon = a  θ=(((7−2)×180°)/7)=((900°)/7)  α=90°−(θ/2)=((180°)/7)  β=θ−2α=((540°)/7)  γ=180°−45°−β=((405°)/7)  DB=b=2a cos α=2a cos ((180°)/7)  AB=(a/( (√2)))  BC=b sin γ=2a cos ((180°)/7) sin ((405°)/7)  AC=((1/( (√2)))+2 cos ((180°)/7) sin ((405°)/7))a=1  ⇒a=(1/((1/( (√2)))+2 cos ((180°)/7) sin ((405°)/7)))  area of heptagon  A=((7a^2 )/(4 tan ((180°)/7)))  =(7/(4 tan ((180°)/7)((1/( (√2)))+2 cos ((180°)/7) sin ((405°)/7))^2 ))  ≈0.728 878 175    check:  ED=(b/( (√2)))  DC=b cos γ  EC=b((1/( (√2)))+cos γ)=2a cos ((180°)/7)((1/( (√2)))+cos ((405°)/7))  =2×(1/((1/( (√2)))+2 cos ((180°)/7) sin ((405°)/7)))×cos ((180°)/7)((1/( (√2)))+cos ((405°)/7))  =1
sidelengthofheptagon=aθ=(72)×180°7=900°7α=90°θ2=180°7β=θ2α=540°7γ=180°45°β=405°7DB=b=2acosα=2acos180°7AB=a2BC=bsinγ=2acos180°7sin405°7AC=(12+2cos180°7sin405°7)a=1a=112+2cos180°7sin405°7areaofheptagonA=7a24tan180°7=74tan180°7(12+2cos180°7sin405°7)20.728878175check:ED=b2DC=bcosγEC=b(12+cosγ)=2acos180°7(12+cos405°7)=2×112+2cos180°7sin405°7×cos180°7(12+cos405°7)=1
Commented by Dwaipayan Shikari last updated on 26/Feb/21
Great sir!
Greatsir!

Leave a Reply

Your email address will not be published. Required fields are marked *