Menu Close

when-finding-0-2-2x-4-5-dx-must-we-change-limits-




Question Number 66513 by Rio Michael last updated on 16/Aug/19
when finding  ∫_0 ^2 (2x +4)^5 dx   must we change limits?
whenfinding02(2x+4)5dxmustwechangelimits?
Commented by kaivan.ahmadi last updated on 17/Aug/19
yes.since we must change the parameter  t=2x+4⇒dt=2dx     { ((x=0⇒t=4)),((x=2⇒t=8)) :}  (1/2)∫_4 ^8 t^5 dt=(1/(12))(8^6 −4^6 )=(1/(12))×4^6 (2^6 −1)=((63)/2)×4^6
yes.sincewemustchangetheparametert=2x+4dt=2dx{x=0t=4x=2t=81248t5dt=112(8646)=112×46(261)=632×46
Commented by Rio Michael last updated on 17/Aug/19
thank you sir.
thankyousir.
Commented by Cmr 237 last updated on 17/Aug/19
no⊛  0.5∫_4 ^8 t^5 dt=0.5×−_6 ^1 [t^6 ]_4 ^8                       =−_(12) ^1 [8^6 −4^6 ]                     =21504 (( [(),() ]),() )
no0.548t5dt=0.5×16[t6]48=112[8646]=21504([])
Commented by kaivan.ahmadi last updated on 17/Aug/19
thank you sir
thankyousir
Answered by mr W last updated on 18/Aug/19
you mustn′t change limits, if you  proceed like this:   ∫_0 ^2 (2x +4)^5 dx    =(1/2)∫_0 ^2 (2x +4)^5 d(2x+4)   =(1/(2×6))[(2x+4)^6 ]_0 ^2   =(1/(12))[8^6 −4^6 ]  =21504
youmustntchangelimits,ifyouproceedlikethis:02(2x+4)5dx=1202(2x+4)5d(2x+4)=12×6[(2x+4)6]02=112[8646]=21504
Commented by Rio Michael last updated on 19/Aug/19
thanks sir
thankssir

Leave a Reply

Your email address will not be published. Required fields are marked *