Menu Close

when-x-y-2pi-3-x-0-y-0-the-maximum-and-the-minimum-of-sin-x-sin-y-is-




Question Number 143450 by bramlexs22 last updated on 14/Jun/21
when x+y=((2π)/3); x≥0 ;y≥0  the maximum and the minimum  of sin x+sin y is ___
whenx+y=2π3;x0;y0themaximumandtheminimumofsinx+sinyis___
Answered by EDWIN88 last updated on 16/Jun/21
 y= ((2π)/3)−x ⇒sin y=sin (((2π)/3)−x)  sin y = (1/2)(√3) cos x+(1/2)sin x  let sin x+sin y=f(x)  f(x)=sin x+(1/2)(√3) cos x+(1/2)sin x  f(x)=(3/2)sin x+(1/2)(√3) cos x   f(x)=k cos (x−∅) → { ((k=(√((9/4)+(3/4))) =(√3))),((∅=tan^(−1) ((√3)) →∅=(π/3) )) :}   (1) f(x)=(√3) cos (x−(π/3))→max = (√3)   when x = y = (π/3)  (2) f(x)_(min) =((√3)/2) when x = 0 ∧ y=((2π)/3)   or x=((2π)/3) ∧ y=0
y=2π3xsiny=sin(2π3x)siny=123cosx+12sinxletsinx+siny=f(x)f(x)=sinx+123cosx+12sinxf(x)=32sinx+123cosxf(x)=kcos(x){k=94+34=3=tan1(3)=π3(1)f(x)=3cos(xπ3)max=3whenx=y=π3(2)f(x)min=32whenx=0y=2π3orx=2π3y=0
Answered by mnjuly1970 last updated on 14/Jun/21
   y:=((2π)/3)−x     M:=sin(x)+((√3)/2)cosx−(1/2)sin(x)          :=(1/2)sin(x)+((√3)/2)cos(x)           max(M):=(√((1/4)+(3/4))) :=1             min(M):=−M=−1
y:=2π3xM:=sin(x)+32cosx12sin(x):=12sin(x)+32cos(x)max(M):=14+34:=1min(M):=M=1
Commented by bramlexs22 last updated on 15/Jun/21
y=120°−x  sin y = sin (120°−x)=(1/2)(√3) cos x−(−(1/2))sin x   = (1/2)(√3) cos x + (1/2)sin x
y=120°xsiny=sin(120°x)=123cosx(12)sinx=123cosx+12sinx

Leave a Reply

Your email address will not be published. Required fields are marked *