Menu Close

Which-of-the-series-converge-and-which-diverge-Check-by-the-limit-comparison-test-1-n-2-1-n-ln-n-n-2-5-2-n-1-ln-n-n-3-2-3-n-3-1-ln-lnn-4-n-1-




Question Number 67244 by Learner-123 last updated on 24/Aug/19
Which of the series converge and   which diverge? Check by the limit  comparison test.  1) Σ_(n=2) ^∞  ((1+n ln(n))/(n^2 +5))  2) Σ_(n=1) ^∞  ((ln(n))/n^(3/2) )  3) Σ_(n=3) ^∞  (1/(ln(lnn)))  4) Σ_(n=1) ^∞  (1/(n (n)^(1/n) ))    ??
Whichoftheseriesconvergeandwhichdiverge?Checkbythelimitcomparisontest.1)n=21+nln(n)n2+52)n=1ln(n)n323)n=31ln(lnn)4)n=11n(n)1n??
Commented by mathmax by abdo last updated on 24/Aug/19
1)Σ_(n=2) ^∞  ((1+nln(n))/(n^2  +5)) =Σ_(n=2) ^∞  (1/(n^2  +5)) +Σ_(n=2) ^∞  ((nln(n))/(n^2  +5))  (1/(n^2 +5)) =(1/(n^2 (1+5n^(−2) )))∼(1/n^2 ) so this serie converges  ((nln(n))/(n^2  +5)) =((nln(n))/(n^2 (1+5n^(−2) ))) ∼ ((ln(n))/n)  let determine nature of Σ((ln(n))/n)  f(t)=((ln(t))/t)  with t≥2 ⇒f^′ (t) =((1−lnt)/t^2 )<0 ⇒f  decreases  ⇒  Σ((ln(n))/n)  and ∫_2 ^(+∞)  ((ln(t))/t)dt  are the same nature   changement ln(t)=u  give ∫_2 ^(+∞)  ((ln(t))/t)dt =∫_(ln(2)) ^(+∞)  (u/e^u ) e^u du   =∫_(ln(2)) ^(+∞)  udu =+∞  so this serie diverges.
1)n=21+nln(n)n2+5=n=21n2+5+n=2nln(n)n2+51n2+5=1n2(1+5n2)1n2sothisserieconvergesnln(n)n2+5=nln(n)n2(1+5n2)ln(n)nletdeterminenatureofΣln(n)nf(t)=ln(t)twitht2f(t)=1lntt2<0fdecreasesΣln(n)nand2+ln(t)tdtarethesamenaturechangementln(t)=ugive2+ln(t)tdt=ln(2)+ueueudu=ln(2)+udu=+sothisseriediverges.
Commented by mathmax by abdo last updated on 24/Aug/19
2) let u_n =((ln(n))/n^(3/2) )    and f(x) =((lnx)/x^(3/2) )   with x>1  we have  f^′ (x)=(((1/x)x^(3/2) −(3/2)x^(1/2) lnx)/x^3 ) =(((√x)−(3/2)(√x)ln(x))/x^3 ) =(1/x^(5/2) )×(1−lnx)<0 ⇒  f decrease so (u_n )decreases  ⇒the serie has the nature of  I∫_1 ^(+∞)  ((ln(x))/x^(3/2) )dx   changement ln(x)=t  give   I =∫_0 ^∞    (t/e^((3/2)t) )dt =∫_0 ^∞ t e^(−(3/2)t)    dt   its clear that I converges ⇒  this serie converges.
2)letun=ln(n)n32andf(x)=lnxx32withx>1wehavef(x)=1xx3232x12lnxx3=x32xln(x)x3=1x52×(1lnx)<0fdecreaseso(un)decreasestheseriehasthenatureofI1+ln(x)x32dxchangementln(x)=tgiveI=0te32tdt=0te32tdtitsclearthatIconvergesthisserieconverges.
Commented by mathmax by abdo last updated on 24/Aug/19
f^′ (x) =(1/x^(5/2) )×(1−(3/2)ln(x))<0
f(x)=1x52×(132ln(x))<0
Commented by Learner-123 last updated on 25/Aug/19
Sir, in 1)→ f ′(t) = ((1−lnt)/t^2 ) <0   ∀ t ε (e,∞) . But ≥0 ∀ tε [2,e].
Sir,in1)f(t)=1lntt2<0tϵ(e,).But0tϵ[2,e].
Commented by mathmax by abdo last updated on 25/Aug/19
sir the nature of a serie dont  changes for a few terms...
sirthenatureofaseriedontchangesforafewterms
Commented by Learner-123 last updated on 25/Aug/19
ok,thank you prof.
ok,thankyouprof.
Commented by mathmax by abdo last updated on 26/Aug/19
3) the sequence u_n =(1/(ln(lnn))) is decreasing  on [3,+∞[ so  Σ u_n   and  ∫_3 ^(+∞)  (dx/(ln(lnx))) have the same nature   changement lnx=t give ∫_3 ^(+∞)  (dx/(ln(lnx))) =∫_(ln(3)) ^(+∞)  ((e^t  dt)/(ln(t)))  we have lim_(t→+∞)     (e^t /(lnt))  =+∞ ⇒ the integral diverges ⇒Σu_n   diverges.
3)thesequenceun=1ln(lnn)isdecreasingon[3,+[soΣunand3+dxln(lnx)havethesamenaturechangementlnx=tgive3+dxln(lnx)=ln(3)+etdtln(t)wehavelimt+etlnt=+theintegraldivergesΣundiverges.

Leave a Reply

Your email address will not be published. Required fields are marked *