Menu Close

Why-does-cos-2-x-1-2-cos-2x-1-




Question Number 5495 by FilupSmith last updated on 16/May/16
Why does:  cos^2 x=(1/2)(cos(2x)+1)
Whydoes:cos2x=12(cos(2x)+1)
Commented by Yozzii last updated on 16/May/16
Let a= (((cosA)),((sinA)) ) ,b= (((cosB)),((−sinB)) ).  For all 0<A,B<2π, the angle between a and b is A+B  ∴ from dot product a•b=∣a∣∣b∣cos(A+B)  ⇒cosAcosB−sinAsinB=(√(cos^2 A+sin^2 A))×(√(cos^2 B+sin^2 B))cos(A+B)  Since cos^2 A+sin^2 A=cos^2 B+sin^2 B=1  ⇒cos(A+B)=cosAcosB−sinAsinB.    ∴ cos(x+x)=cosxcosx−sinxsinx  =cos^2 x−sin^2 x  =cos^2 x−1+cos^2 x  =2cos^2 x−1  ⇒cos2x=2cos^2 x−1  ⇒cos^2 x=((cos2x+1)/2)
Leta=(cosAsinA),b=(cosBsinB).Forall0<A,B<2π,theanglebetweenaandbisA+Bfromdotproductab=∣a∣∣bcos(A+B)cosAcosBsinAsinB=cos2A+sin2A×cos2B+sin2Bcos(A+B)Sincecos2A+sin2A=cos2B+sin2B=1cos(A+B)=cosAcosBsinAsinB.cos(x+x)=cosxcosxsinxsinx=cos2xsin2x=cos2x1+cos2x=2cos2x1cos2x=2cos2x1cos2x=cos2x+12
Answered by Rasheed Soomro last updated on 16/May/16
We know that  cos(α+β)=cos α cos β −sin α sin β  Let α=β=x  cos(x+x)=cos x cos x −sin x sin x  cos 2x=cos^2 x−sin^2 x  But sin^2 x=1−cos^2 x  So   cos 2x=cos^2 x−(1−cos^2 x)=cos^2 x−1+cos^2 x          cos 2x=2cos^2 x−1           2cos^2 x=cos 2x+1   or   cos^2 x=(1/2)(cos(2x)+1)
Weknowthatcos(α+β)=cosαcosβsinαsinβLetα=β=xcos(x+x)=cosxcosxsinxsinxcos2x=cos2xsin2xButsin2x=1cos2xSocos2x=cos2x(1cos2x)=cos2x1+cos2xcos2x=2cos2x12cos2x=cos2x+1orcos2x=12(cos(2x)+1)

Leave a Reply

Your email address will not be published. Required fields are marked *